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Duration Models

Also known as survival models or time-to-event models.

A broad class of estimation strategies for modeling the timing of
events.

Arose initially in medical research, but now ubiquitous in social
science research.

A wide variety of considerations to evaluate when specifying
them.
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Political Science Examples of Duration Outcomes

1 How long until a state/city/country adopts a policy?

2 How long until treaties are signed?

3 How long do wars or civil conflicts last?

4 How long do governments last?

5 How long until Presidential nominees are confirmed?

6 When do candidates go negative?
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What are the Main Features of Duration Data?

1 Start with a collection of subjects.

2 Identify the duration event of interest.

3 Collect data on their spells: when the event of interest starts
and when it ends.

4 Collect information on variables that may influence the duration
of spells.
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Questions to Ask Before Starting Your Analysis

1 Do I have a discrete or continuous measure of failure time?

2 Are all spells fully observed?

3 Does the baseline hazard change over time?

4 Do any independent variables change over the course of a spell?

5 Do I have multiple failures per subject?

6 Are all subjects at risk of failure?

7 Are there conceptually different ways in which subjects can fail?
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Outline of Workshop

1 Discrete versus continuous outcomes:

1 Discrete for failures in distinct periods: logit/probit;
2 Continuous for failure times in exact or small units.

2 Questions about censoring:

1 Do we fully observe beginning, middle, and end of all durations?
2 Most commonly: do all units fail in the study period?
3 If not, need to account for censoring in our analysis.

3 Accounting for duration dependence:

1 Does the chance of the event increase or decrease over time?
2 In discrete version, include variables for time trend;
3 In continuous version, need to pick the right distribution.
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Outline of Workshop

1 Time-varying versus time-invariant covariates

1 Do independent variables change over time?
2 If yes, data structure is somewhat different.

2 Multiple events:

1 Repeated failures of the same type suggest controlling for event
number;

2 Competing failure types allow modeling each distinctly.

3 Miscellaneous extensions:

1 Split population models;
2 Non-random sample selection;
3 Pooled event history analysis.
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Goals

Gain a general understanding of ...

The general structure of duration outcomes;

Statistical details of basic estimators for discrete and continuous
duration data;

The most common set of considerations for basic duration data;

Resources and concepts related to more advanced issues;

How to work with duration data in Stata;

Practical advice based on my experiences.
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Goals of the Computer Exercises

Examples to learn basic commands;

Guided learning using variations on basic examples;

Start simple, then get more complicated;

Play with you data — what matters and how?;

Use good programming practices (you’ll pick up some tricks).
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Presentation Conventions

1 Stata commands are indicated in typewriter font.

2 Stata commands you can run are preceded by a “.” and in
typewrite font.

3 Commands may break across two lines of slides, but they must
be one line in the Stata command prompt (they can wrap, but
no carriage returns).

4 Some special characters may not copy properly from pdf, e.g., ,
‘’.

5 I’ll share batch files for all the computer exercises we do.
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General Concepts

Identify the start of the duration process.

Measure the time of failure for each unit.

Determine the appropriate unit of time:

1 How is the outcome variable measured?
2 Do events occur in discrete periods?
3 Do covariates change over time?
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Key Concepts

Risk Set: the set of observations that are still at risk of
experiencing the event at time t, R(t) = {i : Yi ≥ t} .

Survival function: the proportion of observations at risk at time t.

Hazard rate: the chance of failure at time t conditional on surviving
to time t.

Spell: The period of time during which a subject is at risk of
failure.
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The Funny Terminology of Duration Analysis

Given its origins in medical research, we have terms like ...

Survival: how long does a patient with a disease live?

Failures: experiencing the event was usually a bad thing!

Cure models: can some people never get the disease?

Frailties: Is there unmeasured heterogeneity in the population?
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Discrete Duration Models

Also known as Event History Analysis (EHA);

Outcome is measured in regular intervals (e.g., annually) and
covariates typically change over those periods as well;

Data are structured in a cross-sectional time-series manner by
period and unit;

Typically estimators include logit, probit, or cloglog;

Censoring is handled in a straightforward manner.
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Discrete vs. Continuous

Discrete duration data code failure within a time period rather
than at an exact time.

Think of data failing in a given year without regard to exactly
when.

Or a study with regular, set followup times.

The outcome is no longer a continuous outcome, but a binary
indicator for failure at each discrete time period.
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Figure: Continuous Duration Data
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Figure: Discrete Duration Data Converted from Continuous Time
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Figure: Discrete Duration Data: How Outcome is Coded
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What do Discrete Duration Data Look Like?

ID Time Fails At Y X
1 1 5 0 -0.68
1 2 5 0 -0.68
1 3 5 0 -0.68
1 4 5 0 -0.68
1 5 5 1 -0.68
1 6 5 . -0.68
1 7 5 . -0.68
1 8 5 . -0.68
1 9 5 . -0.68
1 10 5 . -0.68
2 1 10 0 2.44
2 2 10 0 2.44
2 3 10 0 2.44
2 4 10 0 2.44
2 5 10 0 2.44
2 6 10 0 2.44
2 7 10 0 2.44
2 8 10 0 2.44
2 9 10 0 2.44
2 10 10 1 2.44
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Estimation

Run a logit, probit, or cloglog model with discrete Y as the
dependent variable.

Risk set is naturally accounted for by how we code the
dependent variable:

1 Yit = 0 means at risk at t and does not fail at t;
2 Yi = 1 means at risk and fails at t;
3 Yi = . means not at risk at t.

Results can be interpreted in the usual manner as the probability
of the event occurring in a given time period.
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Interpretation

Results can be interpreted in the usual manner for a discrete
choice model, e.g., using predict or margins in Stata, as the
probability of the event occurring in a given time period (the
hazard):

Pr(Yit = 1|Xit) =
exp(Xitβ)

1 + exp(Xitβ)
.

Since the single-period effects may seem small, you may also
want to generate the survival function to convey the cumulative
effect of a covariate:

S(T |Xi) = Pr(Yit = 0∀t < T |Xit) =
T∏
t=1

Pr(Yit = 0|Xit).
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Accounting for Duration Dependence

Does the baseline hazard rate change over time independently of
changes in covariates? If so, we can include:

A linear time trend;

A quadratic, cubic, or higher-order polynomial of time;

Splines of time;

Time fixed effects.
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Accounting for Duration Dependence: Recommendations

Linear time trend is usually not enough;

A quadratic or cubic is usually pretty good – just test for adding
additional terms;

Splines are very flexible, but make sure to look into picking the
number and location of knots;

Time fixed effects tend to be overkill and often lead to data
separation issues.
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Computer Exercise for Discrete EHA

Commands for this are in exercise01discrete.do.

Open the file exercise01discrete.dta;

Create the dependent variable from adoption years;

Create some basic graphs of the duration process;

Run a discrete EHA model;

Control for duration dependence in various ways;

Generate predicted values to interpret the model.
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Continuous Time Duration Models

Outcome is measured very precisely (e.g., days or months);

Covariates might change or may be constant;

Data could be structured as cross-sectional or cross-section
time-series, depending on covariate structure.

Here we have to pick a distribution to capture duration
dependence;

Stata has a suite of commands for survival data which will
handle censoring easily once the data are declared appropriately.
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What do Duration Data Look Like?

Subject Start Time End Time Duration X
1 2.21 6.38 4.18 −0.68
2 4.89 13.95 9.06 2.44
3 4.27 5.50 1.23 0.02
4 5.73 7.61 1.87 −0.39
5 0.26 2.92 2.65 0.80
6 2.39 6.60 4.21 0.55
7 6.71 10.25 3.53 1.83
8 4.59 10.82 6.22 −0.26
9 2.07 2.10 0.03 −1.41

10 6.02 6.35 0.33 −0.12
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Figure: Example of Duration Data: Start and End Times
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Figure: Example of Duration Data: Time to Failure
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Relating Continuous Time Durations to OLS

Helpful to think of as similar to OLS data-generating process:

Yi = Xiβ + ui .

But that would be problematic since durations must be
non-negative, so we modify a bit:

ln(Yi) = Xiβ + ln(ui).

Then rewrite by exponentiating both sides:

exp(ln(Yi)) = exp(Xiβ + ln(ui)),

Yi = exp(Xiβ) exp(ln(ui)),

Yi = exp(Xiβ)ui .

This keeps the duration outcome, Yi , positive and the error
scales the outcome up or down.
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Choosing a Distribution for ui

With continuous time durations we have many possible
distributions for ui from which to select.

Choice is important since it implies features of the duration,
most notably the shape of the baseline hazard over time.
Common examples include:

1 Exponential: hazard rate stays constant;
2 Weibull: hazard can increase or decrease;
3 Log-normal: Hazard can increase then decrease;
4 Gamma: Flexible and allows previous as special cases.

Covariates then model changes in the expected duration.

These estimators make the proportional hazards assumption: the
effect of an independent variable on the hazard stays constant
over time.

Semi-parametric Cox approach allow for arbitrary hazard rates.
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Moving from Errors to Outcomes
Once we assume a distribution for the error term we can characterize
the distribution of Y .

We typically assume the data is generated as follows:

Yi = exp(Xiβ)ui .

To obtain the distribution of Yi we solve for ui :

ui = Yi exp(−Xiβ).

To simplify the expression write λi = exp(−Xiβ). Thus

ui = Yiλi .

The distribution of Y is then used to:

I Derive the likelihood and estimate the parameters;
I Interpret the results.
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Additional Interpretations of Durations

Given the density, f (Y ), and its associated cdf, F (Y ), we often focus
on two additional representations of the distribution.

The survival function, which captures the probability a subject
has not experienced the event by time t:

S(Y ) = 1− F (Y ).

The hazard rate, which captures the instantaneous chance of
failure at time t given that a subject has survived to t:

h(Y ) =
f (Y )

1− F (t)
=

f (Y )

S(Y )
.
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The Exponential

F (ui) = 1− exp(−ui),
F (Yi |Xi) = 1− exp(−Yiλi);

S(Yi |Xi) = 1− F (Yi |Xi),

= exp(−Yiλi);

f (Yi |Xi) = λi exp(−Yiλi),

h(Yi |Xi) =
f (Yi |Xi)

1− F (Yi |Xi)
,

=
λi exp(−Yiλi)

exp(−Yiλi)
,

= λi .

Note that the hazard, λi , does not depend on time.

Boehmke (Iowa) Duration Models October 6, 2014 33 / 81



Figure: Shapes of Exponential Durations
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The Weibull

F (ui) = 1− exp(−up
i ),

F (Yi |Xi) = 1− exp(−(Yiλi)
p);

S(Yi |Xi) = 1− F (Yi |Xi),

= exp(−(Yiλi)
p);

f (Yi |Xi) = pλpi Y
p−1
i λi exp(−(Yiλi)

p),

h(Yi |Xi) =
f (Yi |Xi)

1− F (Yi |Xi)
,

=
pλpi Y

p−1
i λi exp(−(Yiλi)

p)

exp(−(Yiλi)p)
,

= pλpi Y
p−1
i .

Note that the hazard does depend on time (via Yi).
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Figure: Shapes of Weibull Durations
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Figure: Shapes of Log-Normal Durations
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The Generalized Gamma
The generalized gamma is especially helpful since it allows for
increasing and decreasing hazards.

f (yi |λi) =
pλi(λiyi)

pκ−1 exp(−(λiyi)
p)

Γ(κ)
.

Table: Special Cases of the Generalized Gamma

κ p Distribution
1 1 Exponential
1 p Weibull
0 p log-normal
κ 1 one parameter gamma
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Estimation

Whichever distribution we select, we use the density to estimate the
parameters via maximum likelihood.

L(θ|Y ,X ) =
n∏

i=1

f (−λiyi).
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Interpretation

We can calculate E [Yi |Xi ] just like in regression and then do
marginal effects or first differences. Expected values for selected
distributions are as follows:

exponential exp(X β̂);

Weibull Γ

(
1 + p̂

p̂

)
exp(X β̂);

log-normal exp(σ̂2/2) exp(X β̂).

We can also plot the hazard or survival function over time (and
do predictions at different values or first differences, etc.).

Stata’s st suite of duration commands includes options for
interpretation as does its predict command.
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The Cox Model

This takes a semi-parametric approach to avoid the problem of
assuming a parametric hazard function.

It is very flexible.

Intuitively, it evaluates the conditional probability that an
observation fails when it does given all the remaining
observations that could fail at that time.

Thus it ignores the exact failure times and considers only the
order.

This leads to a ratio of densities through which the baseline
hazard cancels out.

Tied failure times complicate it a little, but solutions exist.
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Intuition Behind the Cox Model

Write the hazard generally as:

h(yi |Xi) = exp(Xiβ)h0(yi).

The conditional probability that observation i fails at time yi , given
that one of the surviving observations fails at yi , is:

Pr(i fails at yi | someone fails at yi) =
h(yi |Xi)∑

j∈R(yi )
h(yi |Xj)

,

=
exp(Xiβ)h0(yi)∑

j∈R(yi )
exp(Xjβ)h0(yi)

,

=
exp(Xiβ)∑

j∈R(yi )
exp(Xjβ)

.
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Estimation for the Cox Model

Order the observations by their observed failure time such that:

y1 < y2 < y3 < . . . < yn.

We can define the partial likelihood function as follows:

Lp(β|Y ,X ) =
n∏

i=1

hi(yi)∑
j∈R(yi )

hj(yi)
,

=
n∏

i=1

exp(Xiβ)∑
j∈R(yi )

exp(Xjβ)
.
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Figure: Comparison of Hazard Rates for Cabinet Durations
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Different Ways of Reporting Parameters

There are multiple ways to report the parameters depending on the
“interpretation” of the model, i.e., hazard versus time to failure.

Table: Reported Estimates for Weibull and exponential models in Stata

Interpretation Reported
Weibull Exponential

Hazard Ratio exp(−β × p) exp(−β)
Prop. Hazard −β × p −β
A.F.T. β β
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Different Ways of Reporting Parameters

Here’s why this makes sense (using the Weibull to illustrate):

h(t) = pλpi y
p−1
i ,

= p exp(−Xiβ)pyp−1
i ,

= p exp(−p(Xiβ))yp−1
i ,

= p exp(−Xiβp)yp−1
i ,

= p exp(−Xiβ
′)yp−1

i ,

where β′ = βp.
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Right Censoring

Right censoring occurs when we do not observe a failure time.

This could happen for many reasons:

1 The study ends before all units fail;
2 Units exit the study for unrelated reasons;
3 The methods of failure becomes impossible (e.g., war ends, a

cure is found).

We need to account for this in our estimation.

The Cox handles this easily.

Parametric models require a bit more work.
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Figure: Illustration of Right Censoring: Data Before Censoring
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Figure: Illustration of Right Censoring: The Underlying Data
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Figure: Illustration of Right Censoring: What we Observe
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Accounting for Right Censoring

Parametric models account for this by constructing the
likelihood out of the density for observed failures and the
survival function for right censored cases.

I For observed failures we use their density (here the exponential):

f (Yi |Xi ) = λi exp(−Yiλi ).

I For censored cases, Y c
i , we use the survival function:

S(Y c
i |Xi ) = exp(−Y c

i λi ).

The Cox model accounts for it via its construction:

I Observations appear in the numerator of the partial likelihood
only when they fail;

I All observations still at risk at the time of failure appear in the
denominator.
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The Likelihood with Right Censoring

Estimation for parametric models works as before except we now
separate observed failures from censored cases. Let ci = 1 denote
that an observation is right censored at y c

i and ci = 0 indicate that
its failure time, yi , is observed.

L(θ|Y ,X ,C ) =
∏
ci=0

f (−λiyi)
∏
ci=1

S(−λiy c
i ).
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Survival Analysis in Stata

For continuous-time models, Stata has an excellent set of routines
under the st suite of commands to handle survival time data.

stset declare the data to be survival time and indicate
censoring, repeated failures, etc.;

stdescribe learn about the features of the data;

stsum learn descriptive statistics about the duration outcome;

sts Plot the hazard and survival function;

streg Run a parametric duration model;

stcox Run a Cox model;

stcurve Plot predicted hazard and survival functions based on
model results.
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The Multiple Interpretations of Variables’ Effects

Different distributions allows different interpretations:

1 Hazard ratio;
2 Proportional hazard;
3 Accelerated failure time.

If the data generating process is Yi = exp(Xiβ)ui , then

Stata Interpretation Reported
Option Weibull Exponential
(none) Hazard Ratio exp(−β × p) exp(−β)
nohr Prop. Hazard −β × p −β
time A.F.T. β β

Not all distributions share the same reporting options.

Key take away: make sure to know what form you are getting
and to be clear in your tables!
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Example: Position Taking on NAFTA

Assume we have single-failure data with time-invariant covariates
(one record per subject) and possible right-censoring. Here we
examine the number of months a cabinet lasts.

use duration02continuous, clear

histogram durat

stset durat

stdescribe

stsum

sts graph, survival

sts graph, survival by(caretk2)
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Computer Exercise for Continuous-Time Duration Models

Commands for this are in exercise02continuous.do.

Open the file exercise02continuous.dta;

Explore the data;

Use the stset command to declare survival time data;

Run a continuous-time survival model;

Explore different parametric specifications and the Cox model;

Account for right censoring.
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Time-Varying Covariates

Many analysis have independent variables that change at
somewhat regular intervals.

This is easy in discrete EHA since the data are already arranged
over time.

For continuous models we have to set up the data with a new
observation for each period in which a variable changes – they
don’t have to be constant units, though.

Ignoring this would only consider the value at the time of failure
rather than the chance of failure at the different values of the
TVCs.

We then identify units when we stset the data.
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TVCs in NAFTA

I have modified the data to include the (lagged) daily count of the
number of supporters and opponents of NAFTA as well as the net
difference. This changes day by day.

Now we need multiple records per observation – one for every
day it is at risk.

We then create a variable indicating the day of failure
(announcement).

We have to stset the data to account for this new structure.
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Nonproportional Hazards

As noted, standard models assume that the proportionate effect of a
variable on the hazard does not change over time, here illustrated
with the Weibull:

h(Yi |Xi) = pλpi Y
p−1
i ,

= p exp(−Xiβ)pY p−1
i ;

h(Yi |Xi + 1) = p exp(−(Xi + 1)β)pY p−1
i ;

h(Yi |Xi + 1)

h(Yi |Xi)
=

p exp(−(Xi + 1)β)pY p−1
i

p exp(−Xiβ)pY p−1
i

,

=
exp(−(Xi + 1)β)p

exp(−Xiβ)p
,

= exp(−β)p.

(Note that exp(−pβ) is the hazard ratio interpretation.)
But this assumption may not hold.
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Testing the PH Assumption

If this assumption is violated, we get biased estimates.

To test the PH assumption in a parametric model, use piecewise
regression or explicit interactions with time.

To test the PH assumption in a Cox model, we calculate the
model’s residuals.

I A global test plots these against time;
I A single variable test plots them against the variable.

Then do explicit statistical tests.
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Testing the PH Assumption

This is often tested using the Schoenfeld residuals, which are
related to the score function.

These calculate the average difference between the value of a
covariate for all units that fail at tk to all units at risk at tk .

The test evaluates whether this average difference correlates
with time.

Under Grambsch and Therneau’s scaled adjustment and if the
time scale is linear it simplifies to a regression of the scaled
residuals on time.
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Correcting for NPH

If there is evidence of NPH, add an interaction of the offending
variable with time (usually ln(t)), re-run the model, and repeat.

Note that these tests can detect other model specification issues
(e.g., omitted variables).

Also note that once you add an interaction with time, you have
TVCs.
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Computer Exercise for Nonproportional Hazards

Commands for this are in exercise03nph.do.

Open the file exercise03nph.dta;

Explore the data;

Use the stset command to declare survival time data;

Run a Cox continuous-time survival model;

Test for NPH;

Correct for NPH using Stata’s tvc() option.;

Correct for NPH “by hand” by converting the data to TVC using
stsplit and adding the interaction with time to correct NPH.
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Repeated Events

Repeated events are common in Political Science application
(e.g., war, government duration).

If we treat them independently, then nothing needs to be done –
just treat them as completely distinct units.

But this may often be incorrect.

We must consider when observations enter and leave the risk set
over time;

And whether and how to account for heterogeneity across events
and units.
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Figure: Single-Failure Continuous Duration Data
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Figure: Repeated Events: What we Observe
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Figure: Repeated Events: Gap Time Setup
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Figure: Repeated Events: Total Time Setup
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Figure: Repeated Events: Counting Process Time Setup
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Key Choices Repeated Events

Our first choice is to treat them as:

1 Gap time: time since last failure;
2 Total time: all begin at the origin (t=0);
3 Counting process: subsequent events begin at failure time

rather than resetting to zero.

Our second choice covers heterogeneity:

1 Does the baseline hazard increase by event number?
2 Do variables have different effects by event number?
3 Do we want to account for frailties across units (i.e., random

effects)?

A typical Political application will evaluate gap time with restricted
hazards, stratifying by failure via fixed effects.
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Competing Risks

Competing risks occur when there is more than one way to fail:

1 Legislator’s career could end in retirement or election loss;
2 War could end with a negotiated settlement or a clear victor.

It’s likely that there will be different factors that determine each
type of failure.

In a data set we only observe one type of failure (the first one).

So we have to treat the other(s) as censored at the point of
observed failure.

Easy to estimate with separate continuous duration models for
each failure type by redeclaring the data with the appropriate
failure indicator. Or with a multinomial logit model for discrete
EHA.
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Figure: Single-Failure Continuous Duration Data
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Figure: Competing Risks: The Underlying Data
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Figure: Competing Risks: What we Observe
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Competing Risks: Estimation

The time of failure is the first event to occur:

Yi = min{Yi1,Yi2, . . .YiK}

We build the likelihood by combining this failure time, k , with right
censoring for the other failure types, j 6= k :

Pr(Yi = yik |Xi) = Pr(Yik = yik |Xik)
∏
j 6=k

Pr(Yij > yik |Xij),

= f (yik |Xik)
∏
j 6=k

Sj(yik |Xik);

L(θ|Y ,X ) =
n∏

i=1

[
f (yik |Xik)

∏
j 6=k

Sj(yik |Xik)

]
.
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Computer Exercise for Competing Risks

Commands for this are in exercise04cr.do.

Open the file exercise04cr.dta;

Explore the data;

Use the stset command to declare survival time data;

Run a Cox continuous-time survival model;

Now allow for competing risks and compare the results.
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Split Population Models

Our data might include units that will never experience the
event – they are “cured”.

But we can’t distinguish this from right censoring in most cases.

So we assume we have two types of observations in the data:
those that will fail (but might not during the study period) and
those that will never fail.

We account for the probability an observation is “cured” in
estimation and can even include covariates to model this
probability as a logit.

In Stata, these models can be estimated if one installs the
spsurv or lncure packages.
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Split Population Models: Estimation

Start with a binary choice model for population assignment:

Zi =

{
0 if Wiγ + εi ≤ 0
1 if Wiγ + εi > 0.

There is one way an observation fails:

Pr(Yi = yi |Xi ,Wi ) = Pr(Yi = yi |Xi ,Wi ,Zi = 0) Pr(Zi = 1|Wi ),

= f (yi |Xi ,Zi = 0) Pr(Zi = 0|Wi ).

While there are two ways that an observation might not fail:

Pr(Yi > Ti |Xi ,Wi ) = Pr(Yi > Ti |Xi ,Wi ,Zi = 1) Pr(Zi = 1|Wi ) + Pr(Zi = 0|Wi ),

= S(Ti |Xi ,Zi = 1) Pr(Zi = 1|Wi ) + Pr(Zi = 0|Wi ),

= exp(−Tiλi )
1

1 + exp(Wiγ)
+

exp(Wiγ)

1 + exp(Wiγ)
.
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Nonrandom Sample Selection

Units may self-select into the duration process and the ones that
do may be different than the ones that don’t.

This is the continuous time duration analog to Heckman’s
selection model for linear regression.

Bias occurs when unobserved factors that influence selection
also influence duration.

Ignoring selection leads to biased estimates.

The solution parallels Heckman’s: model both processes
simultaneously and allow for correlation in the error terms.
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Pooled EHA

Used for simultaneously estimating clusters of similar events,
e.g.:

1 Pro- and anti-abortion policies;
2 Position timing on lots of bills.

Essentially stacks separate EHA data and runs one big model to
examine common influences.

Need to think about accounting for heterogeneity across events:
baseline hazards, duration dependence, coefficients.

The goal is to balance between full parsimony and completely
separate estimating across events.

Multilevel modeling can provide some nice leverage on this
tradeoff.
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Computer Exercise for Time-Varying Covariates

Commands for this are in exercise05tvc.do.

Open the file exercise05tvc.dta;

Run a Weibull continuous-time survival model;

Now let’s create multiple record per subject data;

Re-stset the data and compare the results;

Then we’ll create time-vary variables and include them in our
analysis.

Boehmke (Iowa) Duration Models October 6, 2014 81 / 81


	Introduction
	Discrete Durations
	Computer Example

	Continuous Durations
	Interpretation
	Cox Model
	Censoring
	Computer Example

	Time-Varying Covariates
	Additional Topics
	Nonproportional Hazards
	Repeated Events
	Competing Risks
	Split Population
	Nonrandom Sample Selection
	Pooled EHA


