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Overview

Problem: Model dependence (review)

Solution: Matching to preprocess data (review)

Problem: Many matching methods & specifications

Solution: The Space Graph helps us choose

Problem: The most commonly used method can increase imbalance!

Solution: Other methods do not share this problem

(Coarsened Exact Matching is simple, easy, and powerful)

 Lots of insights revealed in the process
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Model Dependence Example

Data: 124 Post-World War II civil wars

Dependent variable: peacebuilding success

Treatment variable: multilateral UN peacekeeping intervention (0/1)

Control vars: war type, severity, duration; development status; etc.

Counterfactual question: UN intervention switched for each war

Data analysis: Logit model

The question: How model dependent are the results?
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Two Logit Models, Apparently Similar Results

Original “Interactive” Model Modified Model
Variables Coeff SE P-val Coeff SE P-val
Wartype −1.742 .609 .004 −1.666 .606 .006
Logdead −.445 .126 .000 −.437 .125 .000
Wardur .006 .006 .258 .006 .006 .342
Factnum −1.259 .703 .073 −1.045 .899 .245
Factnum2 .062 .065 .346 .032 .104 .756
Trnsfcap .004 .002 .010 .004 .002 .017
Develop .001 .000 .065 .001 .000 .068
Exp −6.016 3.071 .050 −6.215 3.065 .043
Decade −.299 .169 .077 −0.284 .169 .093
Treaty 2.124 .821 .010 2.126 .802 .008
UNOP4 3.135 1.091 .004 .262 1.392 .851
Wardur*UNOP4 — — — .037 .011 .001
Constant 8.609 2.157 0.000 7.978 2.350 .000
N 122 122
Log-likelihood -45.649 -44.902
Pseudo R2 .423 .433
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Doyle and Sambanis: Model Dependence
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Model Dependence: A Simpler Example

What to do?

Preprocess I: Eliminate extrapolation region

Preprocess II: Match (prune bad matches) within interpolation region

Model remaining imbalance
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Matching within the Interpolation Region
(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)
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Matching within the Interpolation Region
(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching reduces model dependence, bias, and variance
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How Matching Works

Notation:

Yi Dependent variable
Ti Treatment variable (0/1, or more general)
Xi Pre-treatment covariates

Treatment Effect for treated (Ti = 1) observation i :

TEi = Yi (Ti = 1)−Yi (Ti = 0)

= observed −unobserved

Estimate Yi (0) with Yj from matched (Xi ≈ Xj) controls

Ŷi (0) = Yj(0) or a model Ŷi (0) = ĝ0(Xj)

Prune unmatched units to improve balance (so X is unimportant)

QoI: Sample Average Treatment effect on the Treated:

SATT =
1

nT

∑
i∈{Ti=1}

TEi

or Feasible Average Treatment effect on the Treated: FSATT
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Ŷi (0) = Yj(0) or a model Ŷi (0) = ĝ0(Xj)
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Method 1: Mahalanobis Distance Matching

1 Preprocess (Matching)

Distance(Xi ,Xj) =
√

(Xi − Xj)′S−1(Xi − Xj)
Match each treated unit to the nearest control unit
Control units: not reused; pruned if unused
Prune matches if Distance>caliper

2 Estimation Difference in means or a model
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Method 2: Propensity Score Matching

1 Preprocess (Matching)

Reduce k elements of X to scalar πi ≡ Pr(Ti = 1|X ) = 1
1+e−Xi β

Distance(Xi ,Xj) = |πi − πj |
Match each treated unit to the nearest control unit
Control units: not reused; pruned if unused
Prune matches if Distance>caliper

2 Estimation Difference in means or a model
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Method 3: Coarsened Exact Matching

1 Preprocess (Matching)

Temporarily coarsen X as much as you’re willing

e.g., Education (grade school, high school, college, graduate)
Easy to understand, or can be automated as for a histogram

Apply exact matching to the coarsened X , C (X )

Sort observations into strata, each with unique values of C(X )
Prune any stratum with 0 treated or 0 control units

Pass on original (uncoarsened) units except those pruned

2 Estimation Difference in means or a model

Need to weight controls in each stratum to equal treateds
Can apply other matching methods within CEM strata (inherit CEM’s
properties)
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Coarsened Exact Matching
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Coarsened Exact Matching
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Coarsened Exact Matching
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Coarsened Exact Matching
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The Bias-Variance Trade Off in Matching

Bias (& model dependence) = f (imbalance, importance, estimator)
 we measure imbalance instead

Variance = f (matched sample size, estimator)
 we measure matched sample size instead

Bias-Variance trade off  Imbalance-n Trade Off

Measuring Imbalance

Classic measure: Difference of means (for each variable)
Better measure (difference of multivariate histograms):

L1(f , g ;H) =
1

2

∑
`1···`k∈H(X)

|f`1···`k
− g`1···`k

|
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Comparing Matching Methods

MDM & PSM: Choose matched n, match, check imbalance

CEM: Choose imbalance, match, check matched n

Best practice: iterate

Choose matched solution & matching method becomes irrelevant

Our idea: Compute lots of matching solutions, identify the frontier of
lowest imbalance for each given n, and choose a matching solution
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A Space Graph: Real Data
King, Nielsen, Coberley, Pope, and Wells (2011)
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A Space Graph: Real Data
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Space Graphs: Different Imbalance Metrics
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A Space Graph: Simulated Data — Mahalanobis
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A Space Graph: Simulated Data — CEM
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A Space Graph: Simulated Data — Propensity Score
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PSM Approximates Random Matching in Balanced Data
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CEM Weights and Nonparametric Propensity Score

CEM Weight: wi =
mT
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i

(+ normalization)

CEM Pscore: P̂r(Ti = 1|Xi ) =
mT
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 CEM:

Gives a better pscore than PSM

Doesn’t match based on crippled information
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Destroying CEM with PSM’s Two Step Approach
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Data where PSM Works Reasonably Well — PSM & MDM

−4 −2 0 2 4

−
4

−
2

0
2

4

Unmatched Data: L1 = 0.685

Covariate 1

C
ov

ar
ia

te
 2

−4 −2 0 2 4

−
4

−
2

0
2

4

PSM: L1 = 0.452

Covariate 1

C
ov

ar
ia

te
 2

−4 −2 0 2 4

−
4

−
2

0
2

4

MDM: L1 = 0.448

Covariate 1

C
ov

ar
ia

te
 2

Gary King (Harvard, IQSS) Matching Methods 54 / 57



Data where PSM Works Reasonably Well — CEM
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Conclusions

Propensity score matching:

The problem:

Imbalance can be worse than original data
Can increase imbalance when removing the worst matches
Approximates random matching in well-balanced data
(Random matching increases imbalance)

The Cause: unnecessary 1st stage dimension reduction
Implications:

Balance checking required
Adjusting for potentially irrelevant covariates with PSM: mistake
Adjusting experimental data with PSM: mistake
Reestimating the propensity score after eliminating noncommon
support: mistake
1/4 caliper on propensity score: mistake

In four data sets and many simulations:
CEM > Mahalanobis > Propensity Score
(Your performance may vary)
CEM and Mahalanobis do not have PSM’s problems
You can easily check with the Space Graph
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For papers, software (for R, Stata, & SPSS), tutorials, etc.

http://GKing.Harvard.edu/cem
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