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Overview

Problem: Model dependence (review)

Solution: Matching to preprocess data (review)

Problem: Many matching methods & specifications

Solution: The Space Graph helps us choose

Problem: The most commonly used method can increase imbalance!
Solution: Other methods do not share this problem

(Coarsened Exact Matching is simple, easy, and powerful)

~ Lots of insights revealed in the process
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@ Dependent variable: peacebuilding success

@ Treatment variable: multilateral UN peacekeeping intervention (0/1)
e Control vars: war type, severity, duration; development status; etc.
o Counterfactual question: UN intervention switched for each war

@ Data analysis: Logit model

Gary King (Harvard, 1QSS) Matching Methods 3 /57



Model Dependence Example

Replication: Doyle and Sambanis, APSR 2000

o Data: 124 Post-World War Il civil wars

@ Dependent variable: peacebuilding success

@ Treatment variable: multilateral UN peacekeeping intervention (0/1)
e Control vars: war type, severity, duration; development status; etc.
o Counterfactual question: UN intervention switched for each war

@ Data analysis: Logit model

@ The question: How model dependent are the results?
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Two Logit Models, Apparently Similar Results

Original “Interactive” Model Modified Model
Variables Coeff SE P-val Coeff SE P-val
Wartype —1.742 .609 .004 | —1.666 .606 .006
Logdead —.445 .126 .000 —.437 125 .000
Wardur .006 .006 .258 .006 .006 .342
Factnum —1.259 .703 .073 | —1.045 .899 .245
Factnum?2 .062 .065 .346 .032 .104 756
Trnsfcap .004 .002 .010 .004 .002 .017
Develop .001 .000 .065 .001 .000 .068
Exp —6.016 3.071 .050 | —6.215 3.065 .043
Decade —.299 .169 .077 | —0.284 .169 .093
Treaty 2.124 .821 .010 2.126 .802 .008
UNOP4 3.135 1.001 .004 .262 1.392 .851
Wardur*UNOP4 — — — .037 .011 .001
Constant 8.609 2.157 0.000 7.978 2.350 .000
N 122 122
Log-likelihood -45.649 -44.902
Pseudo R? 423 433
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Doyle and Sambanis: Model De
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Matching within the Interpolation Region
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Matching within the Interpolation Region
(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)
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Matching within the Interpolation Region

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching reduces model dependence, bias, and variance
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= observed —unobserved

e Estimate Y;(0) with Y; from matched (X; = Xj) controls

Y:(0) = Y;(0) or a model ¥;(0) = go(X;)
@ Prune unmatched units to improve balance (so X is unimportant)
@ Qol: Sample Average Treatment effect on the Treated:

SATT_— Z TE;
IG{T 1}

@ or Feasible Average Treatment effect on the Treated: FSATT
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Method 1: Mahalanobis Distance Matching

@ Preprocess (Matching)

Distance(X;, X;) = /(Xi — X;)’S~1(X; — X;)

o Match each treated unit to the nearest control unit
o Control units: not reused; pruned if unused

e Prune matches if Distance>caliper

@ Estimation Difference in means or a model
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@ Preprocess (Matching)
e Temporarily coarsen X as much as you're willing

@ e.g., Education (grade school, high school, college, graduate)
o Easy to understand, or can be automated as for a histogram

e Apply exact matching to the coarsened X, C(X)

@ Sort observations into strata, each with unique values of C(X)
@ Prune any stratum with O treated or 0 control units

o Pass on original (uncoarsened) units except those pruned

@ Estimation Difference in means or a model
o Need to weight controls in each stratum to equal treateds

Gary King (Harvard, 1QSS) Matching Methods 34 / 57



Method 3: Coarsened Exact Matching

@ Preprocess (Matching)
e Temporarily coarsen X as much as you're willing

@ e.g., Education (grade school, high school, college, graduate)
o Easy to understand, or can be automated as for a histogram

e Apply exact matching to the coarsened X, C(X)

@ Sort observations into strata, each with unique values of C(X)
@ Prune any stratum with O treated or 0 control units

o Pass on original (uncoarsened) units except those pruned

@ Estimation Difference in means or a model

o Need to weight controls in each stratum to equal treateds
o Can apply other matching methods within CEM strata (inherit CEM's
properties)
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The Bias-Variance Trade Off in Matching

@ Bias (& model dependence) = f(imbalance, importance, estimator)
~+ we measure imbalance instead

e Variance = f(matched sample size, estimator)

~~ we measure matched sample size instead
@ Bias-Variance trade off ~» Imbalance-n Trade Off
@ Measuring Imbalance

o Classic measure: Difference of means (for each variable)
o Better measure (difference of multivariate histograms):

1
‘Cl(f7g; H) = 5 E |f€1~~~€k - g€1'~~€k|
Ly---L€H(X)
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Comparing Matching Methods

MDM & PSM: Choose matched n, match, check imbalance
CEM: Choose imbalance, match, check matched n
Best practice: iterate

Choose matched solution & matching method becomes irrelevant

Our idea: Compute lots of matching solutions, identify the frontier of
lowest imbalance for each given n, and choose a matching solution
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A Space Graph: Real Data

King, Nielsen, Coberley, Pope, and Wells (2011)
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A Space Graph: Real Data
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A Space Graph: Real Data
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Space Graphs: Different Imbalance Metrics
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A Space Graph: Simulated Data — Mahalanobis
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A Space Graph: Simulated Data — CEM
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d Data — Propensity Score
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PSM Approximates Random Matching in Balanced Data
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CEM Weights and Nonparametric Propensity Score

3

CEM Weight: w; = (+ normalization)
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CEM Weights and Nonparametric Propensity Score

-
CEM Weight: w; = m,C (+ normalization)
m;
~ mT
CEM P : Pr(Ti=1|X;)) = —"——+
score r(T; |Xi) mT & mC
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CEM Weights and Nonparametric Propensity Score

-
CEM Weight: w; = m,C (+ normalization)
m;
~ mT
CEM P : Pr(Ti=1|X;)) = —"——+
score r(T; |Xi) mT & mC

~ CEM:
o Gives a better pscore than PSM

@ Doesn’'t match based on crippled information
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Destroying CEM with PSM'’s Two Step Approach
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Data where PSM Works Reasonably Well — PSM & MDM
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Data where PSM Works Reasonably Well — CEM
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Conclusions

@ Propensity score matching:
e The problem:
o Imbalance can be worse than original data
o Can increase imbalance when removing the worst matches
@ Approximates random matching in well-balanced data
(Random matching increases imbalance)
o The Cause: unnecessary 1st stage dimension reduction
o Implications:
@ Balance checking required
o Adjusting for potentially irrelevant covariates with PSM: mistake
o Adjusting experimental data with PSM: mistake
o Reestimating the propensity score after eliminating noncommon
support: mistake
@ 1/4 caliper on propensity score: mistake

@ In four data sets and many simulations:
CEM > Mahalanobis > Propensity Score
e (Your performance may vary)
o CEM and Mahalanobis do not have PSM's problems
@ You can easily check with the Space Graph
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For papers, software (for R, Stata, & SPSS), tutorials, etc.

http://GKing.Harvard.edu/cem
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