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@ Conceptualization through Classification: “one of the most central

and generic of all our conceptual exercises. .. .the foundation not
only for conceptualization, language, and speech, but also for
mathematics, statistics, and data analysis. ... Without classification,

there could be no advanced conceptualization, reasoning, language,
data analysis or,for that matter, social science research.” (Bailey,
1994).

o Cluster Analysis: simultaneously (1) invents categories and (2)
assigns documents to categories

@ We focus on unstructured text; methods apply more broadly.

@ Main goal: Switch from Fully Automated to Computer Assisted
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What's Hard about Clustering?

(aka Why Johnny Can’t Classify)

Clustering seems easy; its not!

Bell(n) = number of ways of partitioning n objects

Bell(2) = 2 (AB, A B)

Bell(3) = 5 (ABC, AB C, A BC, AC B, AB C)

Bell(5) = 52

Bell(100) ~ 10?8 x Number of elementary particles in the universe

Now imagine choosing the optimal classification scheme by hand!

Fully automated algorithms can help, but which ones?
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The Problem with Fully Automated Clustering

@ The (Impossible) Goal: optimal, fully automated,
application-independent cluster analysis

@ No free lunch theorem: every possible clustering method performs
equally well on average over all possible substantive applications
o Existing methods:

e Many choices: model-based, subspace, spectral, grid-based, graph-
based, fuzzy k-modes, affinity propagation, self-organizing maps,. ..
Well-defined statistical, data analytic, or machine learning foundations
How to add substantive knowledge: With few exceptions, unclear
The literature: little guidance on when methods apply
Deriving such guidance: difficult or impossible

@ Deep problem: full automation requires more information

No surprise: everyone's tried cluster analysis; very few are satisfied
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Switch from Fully Automated to Computer Assisted

o Fully Automated Clustering may succeed sometimes, but fails in
general: too hard to understand when each model applies

@ An alternative: Computer-Assisted Clustering

Easy in theory: list all clusterings; choose the best

Impossible in practice: Too hard for us mere humans!

An organized list will make the search possible

Insight: Many clusterings are perceptually identical

E.g.,: consider two clusterings that differ only because one document
(of 10,000) moves from category 5 to 6

@ Question: How to organize clusterings so humans can understand?
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~» We develop a (conceptual) geography of clusterings
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A New Strategy

Make it easy to choose best clustering from millions of choices

@ Code text as numbers (in one or more of several ways)

@ Apply all clustering methods we can find to the data — each
representing different (unstated) substantive assumptions (<15 mins)

@ (Too much for a person to understand, but organization will help)

@ Develop an application-independent distance metric between
clusterings, a metric space of clusterings, and a 2-D projection

© “Local cluster ensemble” creates a new clustering at any point, based
on weighted average of nearby clusterings

O A new animated visualization to explore the space of clusterings
(smoothly morphing from one into others)

@ ~~ Millions of clusterings, easily comprehended

@ (Or, our new strategy: represent the entire bell space directly; no
need to examine document contents)
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Many Thousands of Clusterings, Sorted & Organized
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Software Screenshot
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Application-Independent Distance Metric: Axioms

@ Metric based on 3 assumptions
@ Distance between clusterings: a function of the pairwise document
agreements (pairwise agreements = triples, quadruples, etc.)
@ Invariance: Distance is invariant to the number of documents (for any
fixed number of clusters)
© Scale: the maximum distance is set to log(num clusters)
@ ~~ Only one measure satisfies all three (the "variation of
information” )
o (Meila, 2007, derives same metric using different axioms & lattice
theory)
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Evaluating ormance

o Goals:
e Validate Claim: computer-assisted conceptualization outperforms
human conceptualization
e Demonstrate: new experimental designs for cluster evaluation
e Inject human judgement: relying on insights from survey research
@ We now present three evaluations
o Cluster Quality = RA coders

o Informative discoveries = Experienced scholars analyzing texts
o Discovery = You're the judge

Gary King (Harvard 1QSS) Quantitative Discovery 11 /21
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e They can't: keep many documents & clusters in their head

o They can: compare two documents at a time

e = C(luster quality evaluation: human judgement of document pairs
@ Experimental Design to Assess Cluster Quality
automated visualization to choose one clustering
many pairs of documents
for coders: (1) unrelated, (2) loosely related, (3) closely related
Quality = mean(within cluster) - mean(between clusters)
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Evaluation 1: Cluster Quality

Lautenberg Press Releases

-0.3 -0.2 -0.1 0.1 0.2 0.3

(Our Method) - (Human Coders)

Lautenberg: 200 Senate Press Releases (appropriations, economy,
education, tax, veterans, ...)
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Evaluation 1: Cluster Quality

Lautenberg Press Releases

Policy Agendas Project

-0.3 -0.2 -0.1 0.1 0.2 0.3

(Our Method) - (Human Coders)

Policy Agendas: 213 quasi-sentences from Bush's State of the Union
(agriculture, banking & commerce, civil rights/liberties, defense, ... )
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Evaluation 1: Cluster Quality

Lautenberg Press Releases

Policy Agendas Project

Reuter's Gold Standard

-0.3 -0.2 -0.1 0.1 0.2 0.3

(Our Method) - (Human Coders)

Reuter's: financial news (trade, earnings, copper, gold, coffee, ...); “gold
standard” for supervised learning studies

Gary King (Harvard 1QSS) Quantitative Discovery 13 /21
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Found 2 scholars analyzing lots of textual data for their work
Created 6 clusterings:

o 2 clusterings selected with our method (biased against us)
o 2 clusterings from each of 2 other methods (varying tuning parameters)

Created info packet on each clustering (for each cluster: exemplar
document, automated content summary)

Asked for (3)=15 pairwise comparisons

User chooses = only care about the one clustering that wins
@ Both cases a Condorcet winner:
“Immigration”:
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Evaluation 2: More Informative Discoveries

@ Found 2 scholars analyzing lots of textual data for their work
o Created 6 clusterings:
o 2 clusterings selected with our method (biased against us)
o 2 clusterings from each of 2 other methods (varying tuning parameters)
o Created info packet on each clustering (for each cluster: exemplar
document, automated content summary)
o Asked for (3)=15 pairwise comparisons

@ User chooses = only care about the one clustering that wins
@ Both cases a Condorcet winner:
“Immigration”:

Our Method 1 — vMF 1 — vMF 2 — Qur Method 2 — K-Means 1 — K-Means 2

"“Genetic testing”:

Our Method 1 — {Our Method 2, K-Means 1, K-means 2} — Dir Proc. 1 — Dir Proc. 2
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Evaluation 3: What Do Members of Congress Do?

- David Mayhew's (1974) famous typology

- Advertising
- Credit Claiming
- Position Taking

- Data: 200 press releases from Frank Lautenberg’s office (D-NJ)
- Apply our method
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Example Discovery

mult_dirproc

Red point: a clustering by
Affinity Propagation-Cosine
(Dueck and Frey 2007)
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Example Discovery

st conelaton ward
st canbelHLgPedoRsand cue

Red point: a clustering by

afforop info.cor

Affinity Propagation-Cosine
- (Dueck and Frey 2007)
o Close to:

Mixture of von Mises-Fisher
distributions (Banerjee et. al.
2005)
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Example Discovery

Space between methods:
local cluster ensemble
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Example Discovery

mult_dirproc

Credit Claiming, Pork:
“Sens. Frank R. Lautenberg
(D-NJ) and Robert Menendez
(D-NJ) announced that the U.S.
Department of Commerce has
awarded a $100,000 grant to the
. SOE South Jersey Economic
Development District”

Clusters in this Clustermgw

Credit Claiming
Pork

Mayhew
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Example Discovery

mult_dirproc
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Credit Claiming, Legislation:

“As the Senate begins its recess,

Senator Frank Lautenberg today

pointed to a string of victories in
Congress on his legislative agenda

-, | during this work period”

Clusters in this Clustermgw

Credit Claiming
Pork
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Mayhew Crédit Claiming

Legislation
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Partisan Taunting:

“Senator Lautenberg's
amendment would change the
name of. .. the Republican

bill. . . to ‘More Tax Breaks for
the Rich and More Debt for Our
Grandchildren Deficit Expansion
Reconciliation Act of 2006"’

Gary King (Harvard 1QSS)
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In Sample lllustration of Partisan Taunting

Taunting ruins deliberation

- “Senator Lautenberg Blasts
Republicans as ‘Chicken Hawks' "
[Government Oversight]

=) :
THE CHICKENHAWK |

Definition

Sen. Lautenberg
on Senate Floor
4/29/04
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In Sample lllustration of Partisan Taunting

Taunting ruins deliberation

- “Senator Lautenberg Blasts
— Republicans as ‘Chicken Hawks
THE CHICKENHAWK | [Government Oversight]

Definition

- "The scopes trial took place in
1925. Sadly, President Bush's veto
today shows that we haven't
progressed much since then”
[Healthcare]

i

- “Every day the House Republicans

Sen. Lautenberg dragged this out was a day that
on Senate Floor made our communities less
4/29/04 safe.” [Homeland Security]
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Out of Sample Confirmation of Partisan Taunting

- Discovered using 200 press releases; 1 senator.
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Out of Sample Confirmation of Partisan Taunting

- Discovered using 200 press releases; 1 senator.
- Confirmed using 64,033 press releases; 301 senator-years.
- Apply supervised learning method: measure proportion of press

releases a senator taunts other party

On Avg., Senators Taunt
in 27 % of Press Releases

30
|

Frequency
20
|

10
L

0.2 0.3 0.4 0.5

0.1

Quantitative Discovery
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Quantitative Methods for Qualitative Conceptualization

1) Conceptualization

Qualitative Methods (reading!)

2) Measurement

Y

Quantitative Methods

\

3) Validation

Quantitative methods for conceptualization and discovery
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Quantitative Methods for Qualitative Conceptualization

1) Conceptualization

Qualitative Methods (reading!)

2) Measurement

Y

Quantitative Methods

\

3) Validation
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Quantitative methods for conceptualization and discovery
- Few formal methods designed explicitly for conceptualization
- Belittled: “Tom Swift and His Electric Factor Analysis Machine”
(Armstrong 1967)
- Evaluation methods measure progress in discovery
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