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What Is time series data?

« A time series Is a collection of data vy,
(t=1,2,...,T), with the interval between y,
and y,,, being fixed and constant.

* \We can think of time series as being
generated by a stochastic process, or the
data generating process (DGP).

* A time series (sample) Is a particular
realization of the DGP (population).

 Time series analysis is the estimation of
difference equations containing stochastic
(error) terms (Enders 2010).



Types of Time Series Data

e Single time series
— U.S. presidential approval, monthly (1978:1-2004:7)

— Number of militarized disputes in the world annually
(1816-2001)

— Changes in the monthly Dow Jones stock market
value (1978:1-2001:1)

— Number of homicides per month in the U.S.
 Pooled time series

— Dyad-year analyses of interstate conflict

— State-year analyses of welfare policies

— Country-year analyses of economic growth



Properties of Time Series Data

 Property #1: Time series data have
autoregressive (AR), moving average
(MA), and seasonal dynamic processes.

e Because time series data are ordered In
time, past values influence future values.

e This often results Iin a violation of the
assumption of no serial correlation in the
residuals of a standard OLS model.
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OLS Strategies

 When you first learned about serial correlation
when taking an OLS class, you probably learned
about techniques like generalized least squares
(GLS) to correct the problem.

e This Is not ideal because we can improve our
explanatory and forecasting abilities by modeling
the dynamics in Y,, X, and ¢..

 The naive OLS approach can also produce
spurious results when we do not account for
temporal dynamics.



Properties of Time Series Data

* Property #2: Time series data often have time-
dependent moments (e.g. mean, variance,
skewness, kurtosis).

 The mean or variance of many time series
Increases over time.

e This Is a property of time series data called
nonstationarity.

* As Granger & Newbold (1974) demonstrated, if
two independent, nonstationary series are
regressed on each other, the chances for finding
a spurious relationship are very high.
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Democracy-Conflict Example

 We can see that the number of militarized
disputes and the number of democracies is
Increasing over time.

 |f we do not account for the nonstationarity of
each time series, we could erroneously conclude
that more democracy causes more conflict.

 These series also have significant changes over
time (WWII, end of Cold War), which could alter
the observed X-Y relationship.



Nonstationarity in the Variance of a Series

e |f the variance of a series IS not constant over time, we
can model this heteroskedasticity using models like
ARCH and GARCH.

« Example: Changes in the monthly DOW Jones value.

1000

500
|

dowdf
0
|
=
——

-500
|

-1000

I I I I I
1980jan 1985jan 1990jan 1995jan 2000jan
date



Properties of Time Series Data

* Property #3: The sequential nature of time
series data allows for forecasting of future
events.

* Property #4: Events In a time series can
cause structural breaks in the data series.
We can estimate these changes with
Intervention analysis, transfer function
models, regime switching/Markov models,
etc.
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Properties of Time Series Data

e Property #5: Many time series are in an
equilibrium relationship over time, what we call
cointegration. We can model this relationship
with error correction models (ECM).

* Property #6: Many time series data are
endogenously related, which we can model with
multi-equation time series approaches, such as
vector autoregression (VAR) and vector error
correction (VECM).

* Property #7: The effect of independent variables
on a dependent variable can vary over time; we
can estimate these dynamic effects with time
varying parameter models.




Issues with OLS Time Series Models

Spurious regression is very likely if two or more
nonstationary series are regressed on each
other.

OLS estimates are sensitive to outliers.

OLS attempts to minimize the sum of squares
for errors; time series with a trend will result in
OLS placing greater weight on the first and last
observations.

OLS treats the regression relationship as
deterministic, whereas time series have many
stochastic trends.

We can do better modeling dynamics than
treating them as a nuisance.




Regression Example, Approval

Regression Model: Dependent Variable is monthly US presidential approval,
Independent Variables include unemployment (unempn), inflation (cpi),
and the index of consumer sentiment (ics) from 1978:1 to 2004.7.

regress presap unempn cpi IcCsS

Source | SS df MS Number of obs = 319
————————————— Fomm FC 3, 315) = 33.69
Model | 9712.96713 3 3237.65571 Prob > F = 0.0000
Resitdual | 30273.9534 315 96.1077885 R-squared = 0.2429
————————————— A e et L L L et Adj R-squared = 0.2357
Total | 39986.9205 318 125.745033 Root MSE = 9.8035

presap Coef. Std. Err. t P>|t] [95% Conf. Interval]

I
o
unempn | -.9439459 -496859 -1.90 0.058 -1.921528 -0336359
cpi | -0895431 -0206835 4_33 0.000 -0488478 -1302384
ics | -161511 -0559692 2.89 0.004 -0513902 -2716318
I

_cons 34.71386 6.943318 5.00 0.000 21.05272 48.37501



Regression Example, Approval

Durbin's alternative test for autocorrelation

HO: no serial correlation

The null hypothesis of no serial correlation is clearly
violated. What if we included lagged approval to deal
with serial correlation?



. regress presap lagpresap unempn cpi 1ICS

Source | SS df MS Number of obs = 318
------------- S F( 4, 313) = 475.91
Model | 34339.005 4 8584.75125 Prob > F = 0.0000
Residual | 5646.11603 313 18.0387094 R-squared = 0.8588
————————————— Fom Adj R-squared = 0.8570
Total | 39985.121 317 126.136028 Root MSE = 4.2472

presap | Coef. Std. Err. t P>]t]| [95% Conf. Interval]
_____________ e
lagpresap | -8989938 .0243466 36.92 0.000 -8510901 -9468975
unempn | -.1577925 .2165935 -0.73 0.467 -.5839557 .2683708

cpi | -0026539 -.0093552 0.28 0.777 -.0157531 -0210609

ics | -0361959 .0244928 1.48 0.140 -.0119955 .0843872

_cons | 2.970613 3.13184 0.95 0.344 -3.191507 9.132732

HO: no serial correlation

-We still have a problem with serial correlation and none of our
independent variables has any effect on approvall

-Interpretation of the effect of the X’s on approval must now take into
account the lagged DV (the total multiplier).



Approaches to Time Series Analysis

e ARIMA/Box-Jenkins

— Focused on single series estimation
— Model a series’ own dynamic properties
— Can include intervention variables

— Generalized version: transfer function models

» Allows for estimation of the relationship between interval
level X; and Y, time series

 Regression Analysis

— Adapts OLS approach to take into account properties
of time series

» Estimate relationship between variables pre-whitened in the
ARIMA process (e.g. Box-Steffensmeier, DeBoef, and Lin
2004)

— Estimate general dynamic models (ADL, ECM) and
test restrictions (DeBoef and Keele 2008)



Univariate Time Series Modeling Process

ARIMA (Autoregressive Integrated Moving Average)
Y, — AR filter — Integration filter — MA filter

(long term) (stochastic trend) (short term)
—> Et

(white noise error)

Vi = &Yer t QYep T €+ D€ ARIMA (2,0,1)
Ay._a; Ay, + € ARIMA (1,1,0)

where Ay, =Y, - Y1



General ADL Specification

* We can start with the Autoregressive
Distributed Lag (ADL) model and test
restrictions on it.

p noq
Yi =ap + Zﬂ’-f}rr—r' T ZZijXjf—i + &;

i=1 i=1 i=0

 DeBoef & Keele use a simpler version:

i =ap+ o Yoy + PoXs + B X1 + &



TaBLE1 Restrictions of the ADL General Dynamic Model

(SRS

Type ADL Model

General Vizag+ oY o+ BoX 4B KXo 46
Partial Adjustment® Vizop+ayY, 4Bk +¢

Static” Vi=ap+PoX; +€

Finite Distributed Lag’ Vi=ap+BoX +Bi X +¢;
Differences* AY =g+ BAX, +¢

Dead Start Vi=zap4aY o 4B K+
Common Factor? Vi=PBoX +e8=Bie +4

Restriction

*Also known as the Koyck model.

"k, = By; Dynamic effects at lags beyond zero constrained to be zero.
n -1

bk] = Z}:I ?:U B}i'

“Infinite mean lag length.

dk[ - B[]I ”4 = 0& EC rﬂte lﬂﬂ%



Multipliers

* For the basic ADL model in Table 1, the long
run or total multiplier is given by:

_ Ba+Ba)
ki = (1—oe; )

* Figure 1 shows different dynamic patterns.

e Costs of invalid restrictions

— Can experience bias in coefficients and standard
errors.



FiIGURE 1 Simulated Lag Distributions: The Effect of Restrictions
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Approaches to Time Series Analysis

 London School of Economics (Granger, Hendry,
Richard, Engle, etc.)

— Combination of theory & empirics

» Use theoretical models as guidelines for which variables to
Include in general specification

* Move from general to specific models via testing
— Error Correction Models (ECM)

 Minnesota (Sims)
— Treats all variables as endogenous

— Vector Autoregression (VAR)
— Bayesian approach (BVAR); see also Leamer (EBA)



Stationarity: Shocks

A shock Is an event which takes place at a
particular point in a time series.

— Examples: effect of 9/2011 terrorist attack on Bush’s
approval; start of a new war; leader being overthrown,
Watergate scandal

Some shocks are modeled as interventions, while
others are simply assumed to be exogenous to the
model (e.g. captured in the error term).

Shocks can alter:

— The intercept

— The slope

— A model’s dynamics (e.g. ARIMA process)

We also introduce shocks in the residuals of a
model to see how dynamics change (e.g. VAR).
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Stationary vs. Nonstationary Series

e Shocks to a stationary series are
temporary; the series reverts to its long
run mean.

 Shocks to a nonstationary series result in
permanent moves away from the long run
mean of the series.

o Stationary series have a finite variance
that Is time invariant; for nonstationary
series, 02— © ast — «.

— Problematic for statistical hypothesis testing



Convergence (mean = 0)
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Non-convergence (mean = 0)
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Unit Roots

e Consider an AR(1) model:
Vi=ayuat & (eq.1)

e, ~ N(0, 0?)

 Case #1: Random walk (a, = 1)
Y= Y1 T &

Yt~ Y1 = &

Ay, = ¢,



Unit Roots

 In this model, the variance of the error
term, €, Increases as t increases, in which
case OLS will produce a downwardly
biased estimate of a, (Hurwicz bias).

* Rewrite equation 1 by subtracting y, ; from
both sides:

Yi— Y1 = Y1~ Y1 T &
Ay, =0yt & (eq.2)
0=(a;—-1)



Unit Roots

 Hy: 0 =0 (there is a unit root)

* H,: 0 # 0 (there is not a unit root)

e |If d =0, then we can rewrite equation 2 as
Ay, = €,

Thus first differences of a random walk time series
are stationary, because by assumption, &, IS
purely random.

In general, a time series must be differenced d
times to become stationary; it is integrated of
order d or I(d). A stationary series is 1(0). A
random walk series is 1(1).



Tests for Unit Roots

* Dickey-Fuller test
— Estimates a regression using equation 2

— The usual t-statistic is not valid, thus D-F
developed appropriate critical values.

—You can include a constant, time trend, or
both In the test.

— If you accept the null hypothesis, you
conclude that the time series has a unit root.

— Potential solution: log/first difference the
series before proceeding with analysis.



Tests for Unit Roots

Augmented Dickey-Fuller test (dfuller in STATA)

— We can use this version if we suspect there is
autocorrelation in the residuals.

— This model is the same as the DF test, but includes lags
of the residuals too.
Phillips-Perron test (pperron in STATA)

— Makes milder assumptions concerning the error term,
allowing for the ¢, to be weakly dependent and
heterogenously distributed.

Other tests include Variance Ratio test, Modified
Rescaled Range test, & KPSS test.

There are also unit root tests for panel data (Levin
et al 2002).



Tests for Unit Roots

* These tests have been criticized for having
low power (1-probability(Type Il error)).

* They tend to (falsely) accept H, too often,
finding unit roots frequently, especially
with seasonally adjusted data or series
with structural breaks. Results are also
sensitive to # of lags used In the test.

e Solution involves increasing the frequency
of observations or obtaining longer time
series.



Example, presidential approval

. dfuller presap, lags(l) trend
Augmented Dickey-Fuller test for unit root Number of obs = 317

—————————— Interpolated Dickey-Fuller --——————-

Test 1% Critical 5% Critical 10% Critical
Statistic Value Value Value
Z(t) -4.183 -3.987 -3.427 -3.130

MacKinnon approximate p-value for Z(t) = 0.0047

. pperron presap

Phillips-Perron test for unit root Number of obs = 318
Newey-West lags = 5
—————————— Interpolated Dickey-Fuller ————————-
Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value
Z(rho) -26.181 -20.354 -14.000 -11.200
Z(t) -3.652 -3.455 -2.877 -2.570

MacKinnon approximate p-value for Z(t) = 0.0048



Example, Presidential Approval

With both tests (ADF, Phillips-Perron), we would
reject the null hypothesis of a unit root and
conclude that the approval series is stationary.

This makes sense because it is hard to imagine
a bounded variable (0-100) having an infinitely
exploding variance over time.

Yet the series does have some persistence as it
trends upward or downward, suggesting that a
fractionally integrated model might work best.

Some studies find that approval has a unit root
or near unit root; disagreement about best
modeling strategy



Other Types of Integration

* Near Integration

— Even in cases where |a,| <1, but close to 1,
we still have problems with spurious
regression (DeBoef & Granato 1997).

— Solution: can log or first difference the time
series; even though over differencing can

Induce non-stationarity, short term forecasts
are often better

— DeBoef & Granato also suggest adding more
lags of the dependent variable to the model.



Other Types of Integration

* Fractional Integration (Box-Steffensmeler
& Smith 1998): (1-L)%y, = ¢,

stationary fractionally unit root
Integrated

d=0 0<d<l1 d=1

low persistence high persistence

« Useful for data like presidential approval or
Interstate conflict/cooperation that have long
memoried processes, but are not unit roots
(especially in the 0.5<d<1 range).



Advanced Topics: Cointegration

Conventional wisdom is to difference all
non-stationary variables used in a
regression analysis.

For example, some scholars pre-whiten
time series prior to ARIMA, transfer
function, or regression analysis.

In a multivariate model, however, there
may be a linear combination of integrated
variables that is stationary.

Such variables are said to be cointegrated.




Advanced Topics: Cointegration

* This meshes well with theories that expect two
or more time series to share an equilibrium
relationship.

 For example, some scholars have argued that
presidential approval is in equilibrium with
economic conditions (Ostrom and Smith 1992).

 |If the economy is doing well and approval is too
ow, it will increase; If the economy is doing
noorly, and the president has high approval, it
will fall back to the equilibrium level.




Money Demand Model (Enders)
M, = Bo + B1p; + Boy + Bl + €

m, = demand for money

P, = price level

y, = real income

r. = Interest rate

e, = stationary disturbance term

All variables are in logged form.

The model assumes that 3,=1, 3,>0, [5<0.



Money Demand Model

Issue: real GDP, the money supply, price level,
and the interest rate can all be characterized as
nonstationary I(1) variables.

Yet the theory specifies that there exists a linear
combination of these variables that is stationary.

€ = My - By - B1P; - BoY: - Bl
Equilibrium theories involving 1(1) variables require
the existence of a combination of variables that is
stationary.

This is the concept of cointegration as introduced
by Engle & Granger (1987).




Advanced Topics: Cointegration

e Variables are in long-run equilibrium when:

B1Xy + BoXp t .o + BXy = 0
in matrix form; B is the vector (B,, B....., B,)
and X, is the vector (Xy; , Xor s «+vy Xt )’

Bx,=0
e The deviation from long run equilibrium,
called the equilibrium error, Is e, such that:

e, = Bx;



Advanced Topics: Cointegration

 The components of the vector x, = (Xy; , X
, ..., Xy ) are said to be cointegrated of
order (d,b) or x, ~ Cl(d,b) If:

— All components of x; are integrated of order d

— There exists a vector 3 = (B4, Bs,..., B,) such
that the linear combination, ;X + BoXp + ... +
B.X., IS Integrated of order (d-b) where b>0.

— The vector § is called the cointegrating vector.

— In the money demand model, the order is
Cl(1,1).



Advanced Topics: Cointegration

e Granger (1983) showed that If two variables
are cointegrated, then they have an error
correction representation (ECM):

&Y[ = +&T Yf_] + BE&XE ‘l"BTXf—] +E[

* |n Ostrom and Smith’s (1992) model:
AA; = AXP + y(Apy - Xiav) + &
where A, = approval
X, = quality of life outcome



TABLE2 Restrictions of the Error Correction Model

Type " ECM Model Restriction
General AY,=ag+af Yooy +PAX 4+ B X +8; None

Partial Adjustment AY =g +a) Yooy + B Xi & 1=B;=0

Static” AYi=ag+of Yooy + B AKX + BT X + 6 af=-1,p] +aj =B -1
Finite Distributed Lagf’ AYy=ap+of Yoy +BpAX + B Xicr + & af=-1

Differences’ AY =+ B AX +¢ ay=0,p] +af =

Dead Start AYi=ag+of Yooy + B Xioy +8 By =0

Common Factor? AY =ag+BIAX, +€,6=p &)+ U p=2a}+1

ﬂkl =BE.

*ki =B} +ai + 1, EC rate 100%.
‘Infinite mean lag length.
0 =0,EC rate 100%, p = B7 + .



Testing for Cointegration: Step 1

e Suppose two variables are I(1) and we
want to see Iif they are cointegrated.

e Test the variables for their order of
Integration with unit root tests (DF, ADF,
Phillips-Perron, KPSS).

— If both series are stationary, you can use

traditional OLS methods.

 DeBoef & Keele argue that ECM can be used even
for stationary series

— If they are integrated of different orders, you
would need multi-cointegration techniques.



Example: Ostrom and Smith (1992)
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Time-Senies DEs Box-Pierce ADF Box-Prerce OV
Test for 2 Unit Root in the Level of Each Sengs

Apprcval -1.86 B.80 NA NA

Unemplovment 0.25 62,15 ~{1.36 23.03

inflatson ~2.68 §3.45 ~2.95 25.73

Test for Tremd Stationanty

Unermployment ~2 09 53.99 ~2.51 22.85

Test for a Umr Root in First Differences of Fach Serics -

A Approval -9.04 §.42 NA NA
A Unemployment NA . NA NA NA
A infiation ~5.41 4290 ~6.33 1757




Testing for Cointegration: Step 1

« Unit root test suggest inflation is (1),
unemployment is trend stationary, and
approval is I(1) or near integrated.

 They also run the unit root tests using data
from Truman through Reagan (entire
sample), showing similar results.



Testing for Cointegration: Step 2

 If two or more series are I(d) where d>0
and d Is the same for each series, then
estimate the long run equilibrium
relationship with OLS.

Vi =Bo+ Bz + e
e Save the residuals.

o See If they are stationary using the same
unit root tests as in step #1.

— Should see a high R?



cASE1 The {v,} and {z,} sequences are both random walk plus noise processes.
Although each is nonstationary, the two sequences have the same stochas-
tic trend; hence, they are cointegrated such that the linear combination
(y, — z,) is stationary. The equilibrium error term is an /(0) process.

W= He+ 8y L= fyt £y The equilibrium error: y,—z,
0 1 | i a ] 1
-1 ]
e .}?;
— —2 Y
i}
3 — ™ ™
4 ' ) | *- ' ‘
0 5 10 1§ 20 5 10 15 20

Both series are 1(1), but y, — z, is stationary.



Figure 6.1 Scatter plot of cointegrated varitables.
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Case 1 of Worksheet 6.1. Since both series decline over time.
there appears {o be a positive relationship between the two.
The equilibrium regression line is shown.



Testing for Cointegration: Step 2

We are testing Ae, = a,e,_, + &,
Hy: a; = 0 (unit root)
H,: a; # 0 (no unit root)
If you accept the null hypothesis (find a unit

root in the residuals), you would conclude the
two series are NOT cointegrated.

If you reject the null hypothesis of a unit root,
you would conclude the two series are
cointegrated.

Issue: standard DF tests fail, so you should
use the Engle & Granger critical values or
Johansen tests.



Testing for Cointegration: Step 2

e Ostrom & Smith estimate each variable as
the DV (three models); Table 5.

 The Dickey Fuller tests allow for rejection
of a unit root for the approval and
unemployment cointegrating regressions.

* Note R? is high for approval and
unemployment regressions, but not
Inflation.



TABLE 5. Cointegrating Regressions and Tests for Cointegration

Endogenous Varnable .,

Approval Unemgployvment 1nflation

Constant 105.09 15.35 24.81
{37.79)y (38.75) (3.53)

Approvai e —L b3 —0.20
E—13.75) {—3.01)

Linemployment —G.11 e —1.23
(—18.75) {—2.7TN

Inflahon - .46 {3,016 e
(—3.01) {(—2.70

Assassinanon attempl T.29 0.78 6.30
. (3.81) (2.7 {3.36)

Iran-Conira scandaj - [ O .49 ~-=2.61 —-3.43
{(—15.44) {—22 .98} {—2.65)

Goodness of fit

R? B2 B9 27

Sl 3.32 {3.48 2.19

W 1.08 (.94 (.38

Residual test for comntegration
DF testt —5.72 —5.3G —3.70
ADFE test NA NA ~5.31

aThe quantitics 10 parentheses are the fratios produced by the regression package. However, because of the
nonstatiosanty of some of the repressors, these coelficients may have ronstandard disttibunions, which makes

drawing mterences from individuzl coeflicients problematic (Engle and Granger 1987).

bCritical valwes for the DF and ADF 1esis for comntegranon (MacKinnon 1991) arer o = 0}, —5.20%

o = &5, 4.5 @

Ci3, 4025,



Testing for Cointegration: Step 3

e Estimate an unrestricted VAR to help
determine best model.

e Estimate the error correction model (ECM)
using the lagged residuals from step 2 as
Instruments for the long run equilibrium
term.

 Then estimate the model using OLS.

— Can be single equation if one variable Is
weakly exogenous or multi-equation (VAR) if
they are endogenously related.



TABLE 6. Unrestricted VAR Results

Endogencus Vanable

A inflation A Unempioyment A Approval
Coefficient r-ratio® Coefficicnt -rafo= Coeflictent t-ratio?
A Inflagion {(— 1) $3.20 2.37 —G.01 —{3. 6 020 .38
A inflatton (—2) —(.05 —0.45 —03.02 —0.49 —{3.29 —4{.52
A Infiation (—3) —(3.08 Q.72 —. (3 —Q.T8& 0.18 G.32
A InfSation {—43} —£.04 —.33 .02 .47 Q.99 i.77
A Inflairon {—35) —3 k1] —1.01 4.03 0.84 .65 .00
A infiatron (—6) 3.} —3.9G — .07 —2.25 G.20 G40
A Unemployment (I} -0, 72 - §.04 —0_ 71 — .90 3.33 i.80
A Unemployment (—2} —0. 76 —2.12 — .02 -0 15 —2.65 —§.49
A Unemployment {—3) —0.37 —1.03 G.i5 §1.33 .39 022
A Unempioyment {(—4) —(.312 -~(.34 019 i.B5 —0.70 — .41
A Unemploymenti (—3) —0.32 —0.9j 0.20 1.89 1.36 0.79
A Unemployment {—63 0.21 .59 .31 2.86 0.58 0.33
A Approval (—1) —£3. GO0 —.18 —{3.00 —{.25 .23 2.01
A Approval (—2) ~ (.04 —~1.85 —0.00 — (.31 0.28 - 2.48
A Approval {(—3) —0.03 —1.32 L3 —1.61 0.19 1.9
A Approval (—4) —Q.50 — GO —3.00 - 12 —~{3.21 —2.10
A Approval (—5} .01 G.27 —0.01 ~%.15 —.01 -~ 06
A Approvat {—6) —(G.00 —0.03 .00 .39 0.05 G.46
Assassinatron attempt (—1) —0.34 —0.48 —-301 1 — .50 .56 272
ran-Contra scandal (—1) 0.20 .45 —G.18 —§.33 —9_ 89 -4 58
Approval {(—1) —0.00 —0.16 —0.00 -0.12 —0.62 —5.24
Unempioyment (—1} - (3. —0.06 — Ok X7 —1.55 ~3.67 e 2
infization (—1) — GO0 —1.36 .03 3_89 —4}.57 —2.75
Consiani .29 0.1% D44 .56 65.17 5.l
7= .63 .55 46
SE .51 .i6 2.54
W i 84 211 §.77
18.35 17.59 10.66

Box-Plerce QO (20 4f}




TABLE 7, Bloc F-Tests

Endogenous Variable
A tnflation A Unemployment A Approval

F p-value F p-vilue F pvalue

A inflation 9.57 00 .03 Al (.91 49

A Unemployment 192 09 3.4 01 1.29 21
A Approval - 0.84 54 0.70 65 3.05 L]




Testing for Cointegration, Step 3

 The Granger Causality tests show that
neither differenced inflation nor differenced
unemployment granger causes approval.

 Inflation and unemployment influence
changes in approval only by creating some
disequilibrium In rewards and punishments
that gets corrected over time.

* We can treat inflation and unemployment
as weakly exogenous, and thus estimate a
single equation model.



TABLE 8. OLS Estimates ot Approval Equilibrium Model

Endogenous Variable

A Approval

Cocfiicient 1-rato p-value
A Approval (— 1) 0.18 2.06 .04»
& Approval (—2) 0.20 2.15 .03e
A Approval {—33 .5 1.78 OB
A Approvai (-4} ~-Q.15 — 90 0GR
A Approval (—5) -0, 07 — .85 .40
& Approval {(—6} —{3.04 —i.52 (G0
Enhancing—domestic events 3.40 2.52 0
Ernhancing—nternational events i.53 2.30 01
Enhancing—personal events 2. 37 1.69 G35
Dirnnishing—-domestic events -~0.88 —(3.98 16
Dirasnishing—-—taternational events —2.52 —1.53 06
Dimanishing---personal events —~2. 71 — 1.G0O 06
Speeches—-——-domestic 0.86 .00 16
Speeches—international —{.26 —.36 B4
Foreign travel .43 Z. {4 02
Equilibrium ervor, £ (—1) (.56 - 6.29 .00

Consiant —{3.593 —1.56 LiZ=

— o



Testing for Cointegration, Step 3

e The equilibrium error (Z(-1)) is statistically
significant. The value of -0.56 indicates that 56%
of the previous month’s disequilibrium is
corrected in the next period and (.56)"in
subsequent periods.

 We also see that lags of approval are significant
as a block suggesting a type of momentum
generating effect from media announcements of
Reagan’s approval ratings.

 Dramatic and ordinary events (except speeches)
also influence the president’s approval rating.



Testing for Cointegration: Step 4

Assess model adequacy

If residuals are serially correlated, lag
lengths may be too short.

Look at significance and size of speed of
adjustment parameters.

You can plot the impulse responses, which
should converge to zero, because the
cointegrating relationship is [(0).



Testing for Cointegration, Step 5

o Step 5: Assess model adequacy

: Goodness-of-Nit measures
* Tests show white  ~p e

noise residuals with  Adjuskd & {changes}
.. R (fevels)
Nno remaining Adisted B2 (el

autocorrelation or l;ég lkehood

heteroskedasticity Percent commect burning poims
Residual diagnostics
DW
ARCH 2 (6
Jarque-Bera Nomality x* (2]
Box-Pierce ¢ ¥* (20)

.34
Gdd
0.93
0.9
- {§1.64

0.17

1.8
6.17
| 43
LY



Plot Impulse Response
Function

210

A0 4
T <+ & L 16 20 2¢ 28 32

Fig. 4. Response of approval to {a#] a sustained one-point increase in
unemplioyment at 7 and {#) the joint cecurrence of the unemployment
increase and an approval-enhancing event
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Fig. 5. Response of approval to {2} a sustained one-point increase n
unemployment at 7 and (b} the unemployment increase at 7 and an
approvalenhancing event at 77 + 4



Conclusion

* A president might optimally manage levels
of public support through the use of a
mixed strategy, relying on the influence of
approval-enhancing events and economic
policy manipulation.

 Modeling time series requires careful
analysis of dynamic specification issues.

* \We must take into account dynamics of
the DV when estimating the size of the
effects of our |Vs.



	Introductory Workshop on Time Series Analysis 
	Overview
	What is time series data?
	Types of Time Series Data
	Properties of Time Series Data
	U.S. Monthly Presidential Approval Data, 1978:1-2004:7
	OLS Strategies
	Properties of Time Series Data
	Number of Militarized Interstate Disputes (MIDs), 1816-2001
	Number of Democracies, 1816-2001
	Democracy-Conflict Example
	Nonstationarity in the Variance of a Series
	Properties of Time Series Data
	 
	Properties of Time Series Data
	Issues with OLS Time Series Models
	Regression Example, Approval
	Regression Example, Approval
	 
	Approaches to Time Series Analysis
	Univariate Time Series Modeling Process
	General ADL Specification
	Slide Number 23
	Multipliers
	Slide Number 25
	Approaches to Time Series Analysis
	Stationarity: Shocks
	Slide Number 28
	Stationary vs. Nonstationary Series
	Convergence (mean = 0)
	Non-convergence (mean = 0)
	Unit Roots
	Unit Roots
	Unit Roots
	Tests for Unit Roots
	Tests for Unit Roots
	Tests for Unit Roots
	Example, presidential approval
	Example, Presidential Approval
	Other Types of Integration
	Other Types of Integration
	Advanced Topics: Cointegration
	Advanced Topics: Cointegration
	Money Demand Model (Enders)
	Money Demand Model
	Advanced Topics: Cointegration
	Advanced Topics: Cointegration
	Advanced Topics: Cointegration
	Slide Number 49
	Testing for Cointegration: Step 1
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Testing for Cointegration: Step 1
	Testing for Cointegration: Step 2
	Slide Number 57
	Slide Number 58
	Testing for Cointegration: Step 2
	Testing for Cointegration: Step 2
	Slide Number 61
	Testing for Cointegration: Step 3
	Slide Number 63
	Slide Number 64
	Testing for Cointegration, Step 3
	Slide Number 66
	Testing for Cointegration, Step 3
	Testing for Cointegration: Step 4
	Testing for Cointegration, Step 5
	Plot Impulse Response Function
	Slide Number 71
	Conclusion

