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Overview 

• Properties of time series data 
• Approaches to time series analysis 
• Stationarity and unit roots 
• Advanced topics 

– Cointegration  
– Error Correction Models (ECM) 



What is time series data? 
• A time series is a collection of data yt 

(t=1,2,…,T), with the interval between yt 
and yt+1 being fixed and constant. 

• We can think of time series as being 
generated by a stochastic process, or the 
data generating process (DGP). 

• A time series (sample) is a particular 
realization of the DGP (population). 

• Time series analysis is the estimation of 
difference equations containing stochastic 
(error) terms (Enders 2010). 



Types of Time Series Data 
• Single time series 

– U.S. presidential approval, monthly (1978:1-2004:7) 
– Number of militarized disputes in the world annually 

(1816-2001) 
– Changes in the monthly Dow Jones stock market 

value (1978:1-2001:1) 
– Number of homicides per month in the U.S. 

• Pooled time series 
– Dyad-year analyses of interstate conflict 
– State-year analyses of welfare policies 
– Country-year analyses of economic growth 



Properties of Time Series Data 

• Property #1: Time series data have 
autoregressive (AR), moving average 
(MA), and seasonal dynamic processes. 

• Because time series data are ordered in 
time, past values influence future values. 

• This often results in a violation of the 
assumption of no serial correlation in the 
residuals of a standard OLS model. 
  Cov[εi, εj] = 0 if i ≠ j 



U.S. Monthly Presidential Approval Data, 1978:1-2004:7 
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OLS Strategies 
• When you first learned about serial correlation 

when taking an OLS class, you probably learned 
about techniques like generalized least squares 
(GLS) to correct the problem. 

• This is not ideal because we can improve our 
explanatory and forecasting abilities by modeling 
the dynamics in Yt, Xt, and εt.  

• The naïve OLS approach can also produce 
spurious results when we do not account for 
temporal dynamics. 



Properties of Time Series Data 
• Property #2: Time series data often have time-

dependent moments (e.g. mean, variance, 
skewness, kurtosis). 

• The mean or variance of many time series 
increases over time. 

• This is a property of time series data called 
nonstationarity. 

• As Granger & Newbold (1974) demonstrated, if 
two independent, nonstationary series are 
regressed on each other, the chances for finding 
a spurious relationship are very high. 



Number of Militarized Interstate Disputes (MIDs), 1816-2001 
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Number of Democracies, 1816-2001 
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Democracy-Conflict Example 
• We can see that the number of militarized 

disputes and the number of democracies is 
increasing over time. 

• If we do not account for the nonstationarity of 
each time series, we could erroneously conclude 
that more democracy causes more conflict. 

• These series also have significant changes over 
time (WWII, end of Cold War), which could alter 
the observed X-Y relationship. 



Nonstationarity in the Variance of a Series 
• If the variance of a series is not constant over time, we 

can model this heteroskedasticity using models like 
ARCH and GARCH. 

• Example: Changes in the monthly DOW Jones value.  
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Properties of Time Series Data 

• Property #3: The sequential nature of time 
series data allows for forecasting of future 
events. 

• Property #4: Events in a time series can 
cause structural breaks in the data series.  
We can estimate these changes with 
intervention analysis, transfer function 
models, regime switching/Markov models, 
etc. 
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Properties of Time Series Data 
• Property #5: Many time series are in an 

equilibrium relationship over time, what we call 
cointegration. We can model this relationship 
with error correction models (ECM).   

• Property #6: Many time series data are 
endogenously related, which we can model with 
multi-equation time series approaches, such as 
vector autoregression (VAR) and vector error 
correction (VECM).  

• Property #7: The effect of independent variables 
on a dependent variable can vary over time; we 
can estimate these dynamic effects with time 
varying parameter models.  



Issues with OLS Time Series Models 
• Spurious regression is very likely if two or more 

nonstationary series are regressed on each 
other. 

• OLS estimates are sensitive to outliers. 
• OLS attempts to minimize the sum of squares 

for errors; time series with a trend will result in 
OLS placing greater weight on the first and last 
observations. 

• OLS treats the regression relationship as 
deterministic, whereas time series have many 
stochastic trends. 

• We can do better modeling dynamics than 
treating them as a nuisance. 



Regression Example, Approval 
Regression Model: Dependent Variable is monthly US presidential approval, 

Independent Variables include unemployment (unempn), inflation (cpi), 
and the index of consumer sentiment (ics) from 1978:1 to 2004:7. 
 

 regress  presap unempn cpi ics 
 

       Source |       SS       df       MS              Number of obs =     319 
 -------------+------------------------------           F(  3,   315) =   33.69 
        Model |  9712.96713     3  3237.65571           Prob > F      =  0.0000 
     Residual |  30273.9534   315  96.1077885           R-squared     =  0.2429 
 -------------+------------------------------           Adj R-squared =  0.2357 
        Total |  39986.9205   318  125.745033           Root MSE      =  9.8035 
  
 ------------------------------------------------------------------------------ 
       presap |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
 -------------+---------------------------------------------------------------- 
       unempn |  -.9439459    .496859    -1.90   0.058    -1.921528    .0336359 
          cpi |   .0895431   .0206835     4.33   0.000     .0488478    .1302384 
          ics |    .161511   .0559692     2.89   0.004     .0513902    .2716318 
        _cons |   34.71386   6.943318     5.00   0.000     21.05272    48.37501 
 ------------------------------------------------------------------------------ 

 



Regression Example, Approval 
Durbin's alternative test for autocorrelation 
--------------------------------------------------------------------------- 
    lags(p)  |          chi2               df                 Prob > chi2 
-------------+------------------------------------------------------------- 
      1     |       1378.554               1                   0.0000 
--------------------------------------------------------------------------- 
                        H0: no serial correlation 
 
The null hypothesis of no serial correlation is clearly 

violated. What if we included lagged approval to deal 
with serial correlation? 



  

. regress  presap lagpresap unempn cpi ics 
 
      Source |       SS       df       MS              Number of obs =     318 
-------------+------------------------------           F(  4,   313) =  475.91 
       Model |   34339.005     4  8584.75125           Prob > F      =  0.0000 
    Residual |  5646.11603   313  18.0387094           R-squared     =  0.8588 
-------------+------------------------------           Adj R-squared =  0.8570 
       Total |   39985.121   317  126.136028           Root MSE      =  4.2472 
 
------------------------------------------------------------------------------ 
      presap |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
   lagpresap |   .8989938   .0243466    36.92   0.000     .8510901    .9468975 
      unempn |  -.1577925   .2165935    -0.73   0.467    -.5839557    .2683708 
         cpi |   .0026539   .0093552     0.28   0.777    -.0157531    .0210609 
         ics |   .0361959   .0244928     1.48   0.140    -.0119955    .0843872 
       _cons |   2.970613    3.13184     0.95   0.344    -3.191507    9.132732 
------------------------------------------------------------------------------ 
 
 
Durbin's alternative test for autocorrelation 
--------------------------------------------------------------------------- 
    lags(p)  |          chi2               df                 Prob > chi2 
-------------+------------------------------------------------------------- 
       1     |          4.977               1                   0.0257 
--------------------------------------------------------------------------- 
                        H0: no serial correlation 
 

-We still have a problem with serial correlation and none of our 
independent variables has any effect on approval! 

-Interpretation of the effect of the X’s on approval must now take into 
account the lagged DV (the total multiplier). 



Approaches to Time Series Analysis 
• ARIMA/Box-Jenkins 

– Focused on single series estimation 
– Model a series’ own dynamic properties 
– Can include intervention variables 
– Generalized version: transfer function models 

• Allows for estimation of the relationship between interval 
level Xt and Yt time series 

• Regression Analysis 
– Adapts OLS approach to take into account properties 

of time series 
• Estimate relationship between variables pre-whitened in the 

ARIMA process (e.g. Box-Steffensmeier, DeBoef, and Lin 
2004) 

– Estimate general dynamic models (ADL, ECM) and 
test restrictions (DeBoef and Keele 2008) 



Univariate Time Series Modeling Process 

ARIMA (Autoregressive Integrated Moving Average) 
Yt → AR filter → Integration filter → MA filter   
  (long term)        (stochastic trend)            (short term)  

 → εt 
  (white noise error) 
 
yt = a1yt-1 + a2yt-2 + εt + b1εt-1   ARIMA (2,0,1) 
Δyt = a1 Δ yt-1 + εt     ARIMA (1,1,0) 
 
where Δyt = yt - yt-1 



General ADL Specification 
• We can start with the Autoregressive 

Distributed Lag (ADL) model and test 
restrictions on it. 
 
 
 

• DeBoef & Keele use a simpler version: 
 

 





Multipliers 
• For the basic ADL model in Table 1, the long 

run or total multiplier is given by: 
 
 
 

• Figure 1 shows different dynamic patterns. 
• Costs of invalid restrictions 

– Can experience bias in coefficients and standard 
errors. 

  





Approaches to Time Series Analysis 
• London School of Economics (Granger, Hendry, 

Richard, Engle, etc.) 
– Combination of theory & empirics 

• Use theoretical models as guidelines for which variables to 
include in general specification 

• Move from general to specific models via testing 
– Error Correction Models (ECM) 

• Minnesota (Sims) 
– Treats all variables as endogenous 
– Vector Autoregression (VAR) 
– Bayesian approach (BVAR); see also Leamer (EBA) 

 



Stationarity: Shocks 
• A shock is an event which takes place at a 

particular point in a time series. 
– Examples: effect of 9/2011 terrorist attack on Bush’s 

approval; start of a new war; leader being overthrown, 
Watergate scandal 

• Some shocks are modeled as interventions, while 
others are simply assumed to be exogenous to the 
model (e.g. captured in the error term).   

• Shocks can alter: 
– The intercept  
– The slope 
– A model’s dynamics (e.g. ARIMA process) 

• We also introduce shocks in the residuals of a 
model to see how dynamics change (e.g. VAR). 





Stationary vs. Nonstationary Series 
• Shocks to a stationary series are 

temporary; the series reverts to its long 
run mean.  

• Shocks to a nonstationary series result in 
permanent moves away from the long run 
mean of the series. 

• Stationary series have a finite variance 
that is time invariant; for nonstationary 
series, σ2 → ∞ as t → ∞. 
– Problematic for statistical hypothesis testing 

  



Convergence (mean = 0) 



Non-convergence (mean = 0) 
Random walk 



Unit Roots 

• Consider an AR(1) model: 
yt = a1yt-1 + εt  (eq. 1) 
εt ~ N(0, σ2) 
• Case #1: Random walk (a1 = 1) 
yt = yt-1 + εt 

yt - yt-1 = εt  
Δyt = εt  



Unit Roots 

• In this model, the variance of the error 
term, εt, increases as t increases, in which 
case OLS will produce a downwardly 
biased estimate of a1 (Hurwicz bias). 

• Rewrite equation 1 by subtracting yt-1 from 
both sides: 

yt – yt-1  = a1yt-1 – yt-1 + εt    
Δyt = δ yt-1 + εt    (eq. 2) 
δ = (a1 – 1) 



Unit Roots 
• H0: δ = 0 (there is a unit root) 
• HA: δ ≠ 0 (there is not a unit root) 
• If δ = 0, then we can rewrite equation 2 as 
 Δyt = εt 
 
Thus first differences of a random walk time series 

are stationary, because by assumption, εt is 
purely random. 

In general, a time series must be differenced d 
times to become stationary; it is integrated of 
order d or I(d).  A stationary series is I(0). A 
random walk series is I(1). 



Tests for Unit Roots 

• Dickey-Fuller test 
– Estimates a regression using equation 2 
– The usual t-statistic is not valid, thus D-F 

developed appropriate critical values. 
– You can include a constant, time trend, or 

both in the test. 
– If you accept the null hypothesis, you 

conclude that the time series has a unit root. 
– Potential solution: log/first difference the 

series before proceeding with analysis. 



Tests for Unit Roots 
• Augmented Dickey-Fuller test (dfuller in STATA) 

– We can use this version if we suspect there is 
autocorrelation in the residuals.   

– This model is the same as the DF test, but includes lags 
of the residuals too. 

• Phillips-Perron test (pperron in STATA) 
– Makes milder assumptions concerning the error term, 

allowing for the εt to be weakly dependent and 
heterogenously distributed. 

• Other tests include Variance Ratio test, Modified 
Rescaled Range test, & KPSS test. 

• There are also unit root tests for panel data (Levin 
et al 2002).  



Tests for Unit Roots 
• These tests have been criticized for having 

low power (1-probability(Type II error)). 
• They tend to (falsely) accept Ho too often, 

finding unit roots frequently, especially 
with seasonally adjusted data or series 
with structural breaks. Results are also 
sensitive to # of lags used in the test. 

• Solution involves increasing the frequency 
of observations or obtaining longer time 
series. 



Example, presidential approval 

. dfuller presap, lags(1) trend 
 

Augmented Dickey-Fuller test for unit root         Number of obs   =       317 
 

                               ---------- Interpolated Dickey-Fuller --------- 
                  Test         1% Critical       5% Critical      10% Critical 
               Statistic           Value             Value             Value 
------------------------------------------------------------------------------ 
 Z(t)             -4.183            -3.987            -3.427            -3.130 
------------------------------------------------------------------------------ 
MacKinnon approximate p-value for Z(t) = 0.0047 

 
. pperron presap 
 
Phillips-Perron test for unit root                 Number of obs   =       318 
                                                   Newey-West lags =         5 
 
                               ---------- Interpolated Dickey-Fuller --------- 
                  Test         1% Critical       5% Critical      10% Critical 
               Statistic           Value             Value             Value 
------------------------------------------------------------------------------ 
 Z(rho)          -26.181           -20.354           -14.000           -11.200 
 Z(t)             -3.652            -3.455            -2.877            -2.570 
------------------------------------------------------------------------------ 
MacKinnon approximate p-value for Z(t) = 0.0048 



Example, Presidential Approval 

• With both tests (ADF, Phillips-Perron), we would 
reject the null hypothesis of a unit root and 
conclude that the approval series is stationary. 

• This makes sense because it is hard to imagine 
a bounded variable (0-100) having an infinitely 
exploding variance over time. 

• Yet the series does have some persistence as it 
trends upward or downward, suggesting that a 
fractionally integrated model might work best. 

• Some studies find that approval has a unit root 
or near unit root; disagreement about best 
modeling strategy 



Other Types of Integration 
• Near Integration  

– Even in cases where |a1| < 1, but close to 1, 
we still have problems with spurious 
regression (DeBoef & Granato 1997). 

– Solution: can log or first difference the time 
series; even though over differencing can 
induce non-stationarity, short term forecasts 
are often better 

– DeBoef & Granato also suggest adding more 
lags of the dependent variable to the model. 



Other Types of Integration 
• Fractional Integration (Box-Steffensmeier 

& Smith 1998): (1-L)dyt = εt 
 
stationary  fractionally  unit root 
    integrated     
d=0   o < d < 1  d=1   
low persistence    high persistence 
• Useful for data like presidential approval or 

interstate conflict/cooperation that have long 
memoried processes, but are not unit roots 
(especially in the 0.5<d<1 range). 



Advanced Topics: Cointegration 
• Conventional wisdom is to difference all 

non-stationary variables used in a 
regression analysis. 

• For example, some scholars pre-whiten 
time series prior to ARIMA, transfer 
function, or regression analysis. 

• In a multivariate model, however, there 
may be a linear combination of integrated 
variables that is stationary. 

• Such variables are said to be cointegrated. 



Advanced Topics: Cointegration 
• This meshes well with theories that expect two 

or more time series to share an equilibrium 
relationship. 

• For example, some scholars have argued that 
presidential approval is in equilibrium with 
economic conditions (Ostrom and Smith 1992).   

• If the economy is doing well and approval is too 
low, it will increase; if the economy is doing 
poorly, and the president has high approval, it 
will fall back to the equilibrium level. 



Money Demand Model (Enders) 
 mt = β0 + β1pt + β2yt + β3rt + et 
 
mt = demand for money 
pt = price level 
yt = real income 
rt = interest rate 
et = stationary disturbance term 
All variables are in logged form. 
The model assumes that β1=1, β2>0, β3<0. 
 



Money Demand Model 
• Issue: real GDP, the money supply, price level, 

and the interest rate can all be characterized as 
nonstationary I(1) variables. 

• Yet the theory specifies that there exists a linear 
combination of these variables that is stationary. 

 et = mt - β0 - β1pt - β2yt - β3rt  
• Equilibrium theories involving I(1) variables require 

the existence of a combination of variables that is 
stationary. 

• This is the concept of cointegration as introduced 
by Engle & Granger (1987). 
 



Advanced Topics: Cointegration 

• Variables are in long-run equilibrium when: 
 β1x1t + β2x2t + … + βnxnt = 0 
in matrix form; β is the vector (β1, β2,…, βn) 
and xt is the vector (x1t , x2t , …, xnt )’ 
  βxt = 0 
• The deviation from long run equilibrium, 

called the equilibrium error, is et such that:  
 et = βxt  
 



Advanced Topics: Cointegration 

• The components of the vector xt = (x1t , x2t 
, …, xnt )’ are said to be cointegrated of 
order (d,b) or xt ~ CI(d,b) if: 
– All components of xt are integrated of order d 
– There exists a vector β = (β1, β2,…, βn) such 

that the linear combination, β1x1t + β2x2t + … + 
βnxnt, is integrated of order (d-b) where b>0.   

– The vector β is called the cointegrating vector. 
– In the money demand model, the order is 

CI(1,1). 
 



Advanced Topics: Cointegration 
• Granger (1983) showed that if two variables 

are cointegrated, then they have an error 
correction representation (ECM): 
 

 
• In Ostrom and Smith’s (1992) model: 

∆At = ∆Xtβ + γ(At-1 - Xt-1ν) + εt 

where  At = approval 
   Xt = quality of life outcome  





Testing for Cointegration: Step 1 
• Suppose two variables are I(1) and we 

want to see if they are cointegrated. 
• Test the variables for their order of 

integration with unit root tests (DF, ADF, 
Phillips-Perron, KPSS). 
– If both series are stationary, you can use 

traditional OLS methods. 
• DeBoef & Keele argue that ECM can be used even 

for stationary series 
– If they are integrated of different orders, you 

would need multi-cointegration techniques. 
 



Example: Ostrom and Smith (1992) 









Testing for Cointegration: Step 1 

• Unit root test suggest inflation is I(1), 
unemployment is trend stationary, and 
approval is I(1) or near integrated. 

• They also run the unit root tests using data 
from Truman through Reagan (entire 
sample), showing similar results. 

 



Testing for Cointegration: Step 2 

• If two or more series are I(d) where d>0 
and d is the same for each series, then 
estimate the long run equilibrium 
relationship with OLS. 

  yt = β0 + β1 zt + et  
• Save the residuals. 
• See if they are stationary using the same 

unit root tests as in step #1. 
– Should see a high R2 



Both series are I(1), but yt – zt is stationary. 





Testing for Cointegration: Step 2 
• We are testing Δet = a1et-1 + εt 
 H0: a1 = 0 (unit root) 
 HA: a1 ≠ 0 (no unit root) 
• If you accept the null hypothesis (find a unit 

root in the residuals), you would conclude the 
two series are NOT cointegrated. 

• If you reject the null hypothesis of a unit root, 
you would conclude the two series are 
cointegrated. 

• Issue: standard DF tests fail, so you should 
use the Engle & Granger critical values or 
Johansen tests. 



Testing for Cointegration: Step 2 

• Ostrom & Smith estimate each variable as 
the DV (three models); Table 5. 

• The Dickey Fuller tests allow for rejection 
of a unit root for the approval and 
unemployment cointegrating regressions. 

• Note R2 is high for approval and 
unemployment regressions, but not 
inflation. 





Testing for Cointegration: Step 3 
• Estimate an unrestricted VAR to help 

determine best model. 
• Estimate the error correction model (ECM) 

using the lagged residuals from step 2 as 
instruments for the long run equilibrium 
term. 

• Then estimate the model using OLS. 
– Can be single equation if one variable is 

weakly exogenous or multi-equation (VAR) if 
they are endogenously related. 







Testing for Cointegration, Step 3 
• The Granger Causality tests show that 

neither differenced inflation nor differenced 
unemployment granger causes approval. 

• Inflation and unemployment influence 
changes in approval only by creating some 
disequilibrium in rewards and punishments 
that gets corrected over time. 

• We can treat inflation and unemployment 
as weakly exogenous, and thus estimate a 
single equation model. 





Testing for Cointegration, Step 3 
• The equilibrium error (Z(-1)) is statistically 

significant. The value of -0.56 indicates that 56% 
of the previous month’s disequilibrium is 
corrected in the next period and (.56)L in 
subsequent periods. 

• We also see that lags of approval are significant 
as a block suggesting a type of momentum 
generating effect from media announcements of 
Reagan’s approval ratings. 

• Dramatic and ordinary events (except speeches) 
also influence the president’s approval rating. 



Testing for Cointegration: Step 4 

• Assess model adequacy 
• If residuals are serially correlated, lag 

lengths may be too short. 
• Look at significance and size of speed of 

adjustment parameters. 
• You can plot the impulse responses, which 

should converge to zero, because the 
cointegrating relationship is I(0). 



Testing for Cointegration, Step 5 
• Step 5: Assess model adequacy 
• Tests show white 
noise residuals with 
no remaining  
autocorrelation or  
heteroskedasticity 

 



Plot Impulse Response 
Function 

  





Conclusion 
• A president might optimally manage levels 

of public support through the use of a 
mixed strategy, relying on the influence of 
approval-enhancing events and economic 
policy manipulation. 

• Modeling time series requires careful 
analysis of dynamic specification issues. 

• We must take into account dynamics of 
the DV when estimating the size of the 
effects of our IVs. 
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