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Review of yesterday
• Overview of spatial data and spatial data analysis
• Why “spatial is special”y p p

– characteristics of spatial data
– scale dependence
– edge effectsg
– heterogeneity
– autocorrelation

– problems caused by spatial data
– iid assumptions of standard linear model violated
– need for tools to deal with non-iid error variance-covariance 

among other problems (boundary problems)

Cl f bl i ti l d t l i• Classes of problems in spatial data analysis
• Review OLS assumptions & violations

f / S
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• Importance of EDA/ESDA



Outline for today
• Spatial processes

– spatial heterogeneity
– spatial dependence

• Global spatial autocorrelation & weights 
matrices
– Moran’s I

Geary’s c– Geary s c

• Understanding & measuring local spatial 
associationassociation
– Moran scatterplot
– LISA statistics
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• Lab: spatial autocorrelation in GeoDa & R



Questions?
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Recall from yesterday…
“What makes the methods of modern 
[spatial data analysis] different from many[spatial data analysis] different from many 
of their predecessors is that they have 
been developed with the recognition that p g
spatial data have unique properties and 
that these properties make the use of 
methods borrowed from aspatial 
disciplines highly questionable”

Fotheringham, Brunsdon & Charlton
Quantitative Geography
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Q g p y
Sage, 2000:xii



And what are these “uniqueAnd what are these unique 
properties”?

• Spatial heterogeneity
• Spatial dependence

Lattice data
• Spatial dependence

• Spatial inhomogeneity
• Contagion

Event data
g

“Spatial Effects” or 
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“Spatial Processes”



“Spatial Effects”
(“Spatial Processes”)( Spatial Processes )

• Spatial effects are properties of spatial data resulting 
in the tendency for spatially proximate observations y p y p
of an attribute Z(s) in R to be more alike than more 
distant observations (Tobler’s 1st Law)
S h l t i i lt f ti• Such clustering in space can result from properties 
shared by some areas in the study region that make 
them different from other areas in the regionthem different from other areas in the region 
(identifiable or not) or from some type of spatially 
patterned interaction among neighboring units or
bothboth

• Think about it as:
– reactive processes (which we will call “spatial heterogeneity”)
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reactive processes (which we will call spatial heterogeneity )
• We will try to model this process with covariates, but generally we will fail

– interactive processes (which we will call “spatial dependence”)



Spatial Heterogeneity
exists when the mean and/or variance… exists when the mean, and/or variance, 

and/or covariance structure of the DGP 
“drifts” over a mapped process

• Typified by regional differentiation; a large scale spatial 
process expressing itself across the entire region under 

pp p

p p g g
study;  arises from regional differences in the DGP

• Reflects the “spatial continuities” of social processes which, 
“taken together help bind social space into recognizable 
structures” – a “mosaic of homogeneous (or 
nearly homogeneous)” areas in which each is 
different from its neighbors (Haining, 1990:22)

• we study using 1st-order analytical tools & 
perspectives (primarily linear or non linear
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perspectives (primarily linear or non-linear
regression)



Spatial Heterogeneity (2)

• No spatial interaction is assumed in the process generating 
spatial heterogeneity.  Follows from the “intrinsic 
uniqueness of each location” (Anselin, 1996:112)q ( )

• A troublesome property, because an assumption of spatial 
homogeneity (spatial stationarity) is assumed to provide 
the necessary replication for drawing inferences from thethe necessary replication for drawing inferences from the 
process

• Moreover, spatial stationarity is an assumption underlying p y p y g
spatial dependence testing & modeling

• Thus, we’re going to work pretty hard to model the 1st-order 
spatial effectsspatial effects

• The definition also includes drift in covariance structure, 
and this is the crucial aspect of spatial heterogeneity for 
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p p g y
many analysts



If we assume spatial heterogeneity 
is a reasonable DGP to entertainis a reasonable DGP to entertain…

• We are saying that apparent clustering in the data y g pp g
is not a result of spatial interaction among areas; no 
small scale neighbor influences; no contagion; no 
2nd order spatial effects2nd-order spatial effects

• For areal data, we are presuming that we can 
specify a regression model with suitable covariatesspecify a regression model with suitable covariates 
such that residual autocorrelation evaporates

• We allow that purely spatial structural effects may• We allow that purely spatial structural effects may 
have to be part of our model specification
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Questions about the notion ofQuestions about the notion of 
spatial heterogeneity?p g y
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Spatial Dependence
f f… the existence of a functional relationship

between what happens at one point in space 
and what happens elsewhere (Anselin 1988:11)

• This sounds a lot like spatial autocorrelation (not yet 

and what happens elsewhere (Anselin, 1988:11)

p ( y
formally defined)… but I do not use the terms 
interchangeably [not all authors are this cautious]

• It means a lack of independence among 
observations (by definition); but “functional 

l ti hi ” i th krelationship” is the key
• Expresses itself as a small-scale, localized, short-

di t ti l 2nd d ti l
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distance spatial process; 2nd-order spatial process



Spatial Dependence (2)

• For the examination of data on an irregular spatial 
lattice (e.g., counties), this spatial process generally 

fis handled through the exogenous declaration of a 
“neighborhood” defined for each observation (and is 
operationalized by a “weights matrix”)operationalized by a weights matrix )

• Returning to the formal expression for our data 
(defined yesterday) z(s) = f (X s β) + ε(s) we(defined yesterday),  z(s)  f (X,s,β) + ε(s) , we 
assume that the 1st-order part of the model leaves 
behind a disturbance vector ε(s) with a spatial 
dependence process that is stationary (and, 
usually, isotropic – although environmental 
scientists will generally disagree with this last bit)
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scientists will generally disagree with this last bit)



Spatial Dependence (3)

Thi f ll i f ll f th ll d• This process follows informally from the so-called 
“First Law of Geography”

• Follows formally from a spatial property known asFollows formally from a spatial property known as 
“ergodicity”, where we permit spatial interaction to 
occur only over a very limited region

• We assume the process is ergodic in order to limit 
the number of parameters we estimate
R ll f t d• Recall from yesterday:

z(s) = f (X,s,β) + u(s)
where u(s) is a random vector with mean 0 and

number of parameters = ((n x n) – n)/2 covariances

where u(s) is a random vector with mean 0 and
variance Var[u(s)] = Σ(θ)
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number of parameters    ((n x n) n)/2      covariances
+ n                       variances
+ k+1                   parameters



If we assume spatial dependence
is a reasonable DGPis a reasonable DGP…

• We are saying that clustering in our data results y g g
from some type of spatial interaction; existence of 
small-scale neighbor influences

• We believe we can theoretically posit reasons why 
clustering results from spatial interaction 
(“contagion”) among our units of observation( contagion ) among our units of observation

• We need to be thinking about what kind of 
dependence model should best introducedependence model should best introduce 
neighboring effects

• Time to dig into the 2nd-order spatial analysis toolkit
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g p y



Questions about the notion of 
spatial dependence?spatial dependence?
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Sqrt(PPOV)

So, which is it… spatial dependence or
spatial heterogeneity? (Frankly it’s not evenspatial heterogeneity?  (Frankly, it s not even 

a proper question!  Why?)
You almost never knowBetter questions might be: “What do we have?”You almost never know

Notions of spatial heterogeneity and spatial dependence 
are not really attributes of the data; they’re concepts we 

i k f h d I d d d l

Better questions might be:  What do we have?  
“What would we like to know?” “What questions 

can these data answer?” “What spatial tools do we 
need to turn to?” “How should we think about
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invent to make sense of the data.  Indeed, our model 
may incorporate both processes

need to turn to?   How should we think about 
modeling these data given what we want to learn?”



Recall from yesterday…
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Which is which?  How to proceed?
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“reactive” process “interactive” process
You almost never know



So… how should we proceed?
A useful admonition to keep 
in mind as we get started:in mind as we get started:
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“All d l“All models are wrong, some 
models are useful”models are useful

G.E.P.Box
“Robustness in the Strategy of Scientific Model Building”

pp 201 236 in Lanner and Wilkerson (eds )pp. 201-236 in Lanner and Wilkerson (eds.)
Robustness in Statistics

Academic Press, 1979
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Questions?Q

UKY 2011



Global Spatial Autocorrelationp
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Recall from yesterday…
• When correlated errors arise from a specification 

with missing variables, OLS estimates of t-test 
values are unreliablevalues are unreliable
– The OLS estimates are not efficient

Under positive spatial autocorrelation the std errors of– Under positive spatial autocorrelation, the std. errors of 
the parameter estimates are biased downward

– Informally, you can think of this as arising because the y, y g
OLS model “thinks” it’s getting more information from the 
observations than it is
Correlated errors inflate the al e of the R2 statistic– Correlated errors inflate the value of the R2 statistic

• When correlated errors result from endogeneity, 
OLS regression parameter estimates are biasedOLS regression parameter estimates are biased 
and inconsistent
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So, where do we go from here?So, where do we go from here?

• Specifically, how  do we develop a means to 
(statistically) differentiate among different kinds of 
maps?
Th t i tif diff t ki d f• That is, can we quantify different kinds of map 
patterns?
And once we develop a statistic for describing• And once we develop a statistic for describing 
(quantifying) different kinds of map patterns, can 
we derive the sampling distribution for this p g
statistic and thus make inferential claims about 
one map vs. another map?
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Suppose we observe the following map of 
southern counties from the 2000 Censussouthern counties from the 2000 Census

(% African-American)
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The question for us then is this:
If Af i A i h d h b ll t dIf African-Americans had somehow been allocated 

in a random fashion to the southern counties, would 
this observed spatial distribution be a likelythis observed spatial distribution be a likely 
outcome of such an allocation procedure?

% African American% African American

UKY 2011

But what does this question mean?  Does it even make sense?



What does it mean to ask about the 
spatial distribution of a census variable asspatial distribution of a census variable as 
if the observations are an outcome from 

some type of sampling experiment?some type of sampling experiment?
• The data are… well, the data; right?
• We’ve got all the counties not just a sample of them• We ve got all the counties, not just a sample of them
• The data for each county (% African-American) are based 

on complete count census data, not on a sample.
• So what can it possibly mean to ask whether this percent 

has been allocated in a “random fashion” (or not)?
• We’re looking at the complete “universe of observations ”We re looking at the complete universe of observations.  

It’s not a sample.  Or is it??
• Sometimes asked:  “Is it  a sample of 1,387 (counties)?”  Or 

is it rather a sample of 1 (single realization of a stochastic
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is it, rather, a sample of 1 (single realization of a stochastic 
process)?



Answers to these questions point 
toward the concept of a datatoward the concept of a data 
generating process (DGP)

This is the conceptual notion that our data 
actually represent just one realization of a 
very large number of possible outcomesvery large number of possible outcomes
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There are a number of formalThere are a number of formal 
perspectives on this topic

and a terrific quote…q
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“[Our data often render] the idea that one is 
working with a (spatial) sample somewhat 
remote Great imagination has gone intoremote.  Great imagination has gone into 
turning what appears to be a population into a 
sample, thereby making statistical theory 

l t ”relevant…”
Graham J. G. Upton & 
Bernard Fingleton
Spatial Data Analysis bySpatial Data Analysis by 
Example, Vol. I
(Wiley & Sons, 1985:325)
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Sampling PerspectivesSampling Perspectives

Generally there are four spatial sampling 
perspectives discussed in the literature p p

based on the sampling design:

with replacement? Yes No

d I t t? Y Norder Important? Yes No
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Two common of these 
sampling perspectives

Sampling with replacement, order is important 
(“free sampling” or “normalzation”):  Perspective 1

Sampling without replacement, order is important 
(“nonfree sampling” or “randomization”): Perspective 2( p g ) p
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Example using the southern counties
This was our 
“observation”

But here’s just one other 
under nonfree samplingobse at o u de o ee sa p g

The question becomes:  How unusual is the pattern (the Moran 
statistic) in map 1 given the 1 387! possible permutations of
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statistic) in map 1 given the 1,387! possible permutations of 
these results under an assumption of nonfree sampling?



If you subscribe to the 
d i ti hrandomization approach…

To operationalize this all (or many of) theTo operationalize this, all (or many of) the 
different arrangements that are possible 
need to be identified in order to constructneed to be identified in order to construct 
the sampling distribution for our statistic
(When the sampling distribution is simply(When the sampling distribution is simply 
too large to construct, we can estimate it.  

Such an approximate sampling Suc a app o a e sa p g
distribution is sometimes called a 

“reference distribution”)
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Thus…
If we create 1 387! maps (or a large sample fromIf we create 1,387! maps (or a large sample from 

this huge number) and derive our spatial 
autocorrelation statistic for each of these maps, 

th h f di t ib ti i twe then have a reference distribution against 
which to weigh the one we actually observed.  It 

might look something like this:g g
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Why should I care about this?

This will become important when we have a

y

This will become important when we have a 
spatial autocorrelation measure and wish to 
know if it is large enough to reject the null 
hypothesis of no spatial autocorrelation

GeoDa uses an empirical permutation method p p
to derive the variance of the Moran spatial 

autocorrelation statistic

R [spdep package] gives us a choice for 
generating the variance of a Moran statistic 
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g g
estimate under either free or nonfree sampling



By the way…y y
Australian, Pat Moran, 

published a version of whatpublished a version of what 
was to become known as 
the Moran test for spatial 

clustering in 1948

Andrew Cliff and J. Keith Ord
generalized the Moran statistic to 
test for spatial autocorrelation among 
residuals from a linear regression 
model (under iid normal 
assumptions) and worked out both 
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the large sample distribution and 
small sample moments in the 1970s



Spatial Autocorrelationp
(Positive) spatial autocorrelation is 
th i t f tt ib t lthe coexistence of attribute value 
similarity and locational similarity

It’s the common, every day, 
confirmation of Tobler’s first lawconfirmation of Tobler s first law

Formally expressed as a moment condition:

[ ] [ ] [ ] [ ] jiforyEyEyyEyyCov jijiji ≠≠−= 0,
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[ ] [ ] [ ] [ ] jfyyyyyy jijiji,



Measuring Spatial Autocorrelation
Two classes of tests for 
spatial autocorrelation:

• Global spatial autocorrelation measures
– do the data as a whole exhibit a spatial pattern, or are 

p

p p ,
observations spatially random?

– most common measure:  Moran’s statistic
• Local indicators of spatial association (LISA) 

statistics
id tifi hi h it i ifi tl ti ll– identifies which units are significantly spatially 
autocorrelated with neighboring units

– Identifies clustering (“hot spots,” “cold spots”)
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Identifies clustering ( hot spots,  cold spots )
– localized Moran statistic



Global Moran’s I
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variance in the dataset



Moran’s I coefficient as a
measure of spatial autocorrelation

Pearson product- Moran’s I
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feasible range:  -1 to +1
feasible range:  -1 to +1 

(sort of)



But the calculation of the globalBut… the calculation of the global 
Moran’s I (or similar measures)requires 

th d fi iti f i ht t ithe definition of a weights matrix
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A d id ifAnd, as an aside, if you are 
interested in the intellectual 

hi t & b k d f hhistory & background of where 
today’s measures of 

autocorrelation originate seeautocorrelation originate, see 
special issue of…

Geographical Analysis (October, 
2009) Vol. 41, Issue 4) ,
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We need to know something g
about weights matrices 
before we can proceedbefore we can proceed
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Okay… again, the derivation of the 
global Moran’s I statistic (andglobal Moran s I statistic (and 
similar statistics) requires the 

specification of a weights matrixspecification of a weights matrix
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Let’s figure out what these wij elements are…



So, consider this “map”
1 2 3 4

p

5 6 7 8

9 10 11 12

13 14 15 16
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Let’s say we’re interested in area i = 6
1 2 3 4

5 6 7 8

9 10 11 12

Which areas are “neighbors” of area 6?

9 10 11 12

13 14 15 16
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Queens and Rooks
(and—occasionally—Bishops)

Th t lf l tThese terms are self explanatory, 
referring to which types of adjacent cells 

h t i l d “ i hb ”we choose to include as “neighbors”
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Queen Rook Bishop



Under a (1st order) “queen” criterion
1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16
Let’s shift our thinking from the map to a matrix
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Let s shift our thinking from the map to a matrix



…21 16

1

Neighbors j

2
.

.

.

Obs. i
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16



…21 16

1

Neighbors j
6

2
.

.

.

6
.

.

.Obs. i
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16



Now let’s be a little more precise 
(th lit t i t i t(the literature is not in agreement 

on these matters)
• “Contiguity matrix” – a general term that 

identifies neighbors with 1 and non-neighborsidentifies neighbors with 1 and non-neighbors 
with 0

• “Weights matrix” – We will almost alwaysWeights matrix  We will almost always 
reserve this term to refer to a row-
standardized contiguity matrix, with weights:
0 ≤ wij ≤ 1

• There a many varieties of weights matrices
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Σ

j

1 1 1 1 3
2 1 1 1 1 1 5
3 1 1 1 1 1 5

Simple
contiguity

4 1 1 1 3
5 1 1 1 1 1 5
6 1 1 1 1 1 1 1 1 8

contiguity
matrix

{cij}
Q 11 1 1 1 1 1 1 1 8

7 1 1 1 1 1 1 1 1 8
8 1 1 1 1 1 5
9 1 1 1 1 1 5

i

Queen1 
Criterion

1 1 1 1 1 5
10 1 1 1 1 1 1 1 1 8
11 1 1 1 1 1 1 1 1 8
12 1 1 1 1 1 5

zeros 
i li it12 1 1 1 1 1 5

13 1 1 1 3
14 1 1 1 1 1 5
15 1 1 1 1 1 5

implicit
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15 1 1 1 1 1 5
16 1 1 1 3



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Σ

1 1/3 1/3 1/3 1

j

2 1/5 1/5 1/5 1/5 1/5 1
3 1/5 1/5 1/5 1/5 1/5 1
4 1/3 1/3 1/3 1

Common row
d di d1

5 1/5 1/5 1/5 1/5 1/5 1
6 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1
7 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1

standardized
weights
matrix

7 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1

8 1/5 1/5 1/5 1/5 1/5 1
9 1/5 1/5 1/5 1/5 1/5 1
i w c

cij
ij

ij
=
∑

10 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1
11 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1
12 1/5 1/5 1/5 1/5 1/5 1

j
j
∑

eros13 1/3 1/3 1/3 1
14 1/5 1/5 1/5 1/5 1/5 1
15 1/5 1/5 1/5 1/5 1/5 1

zeros 
implicit
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15 1
16 1/3 1/3 1/3 1



So, the elements of the weights matrix 
serve somewhat the role of an indicatorserve somewhat the role of an indicator 

variable in this equation.  Nearby 
observations have non-zero weights;observations have non zero weights; 
distant observations have zero weight
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Now consider these yi values, i = 1,…,16

1

7
2

6
3

4
4

57 6 4 5
5 6 7 8

4 5 4 4
9 10 11 129

5
10

6
11

3
12

4
Armed with 
this “map”, 
let’s now 

13

3
14

4
15

1
16

2

define what 
we mean by 

a “spatial 
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3 4 1 2 lag”



For i = 6, the spatial lag , p g
operator w6j yj is given by:

=j 16

w y6 j j =
=

∑ w yj j

j

6
1

16

=j 1

= + + + + + + +
1
8

7 1
8

6 1
8

4 1
8

4 1
8

4 1
8

5 1
8

6 1
8

3
8 8 8 8 8 8 8 8

= 4 9 (zeros not shown)= 4.9       (zeros not shown)
In words, how would we 

d ib thi l f 4 9?
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describe this value of 4.9?



Can you define the spatial lag for map area 16?

1

7
2

6
3

4
4

5
How many 
neighbors 

under a Q1 7 6 4 5
5 6 7 8

u de a Q
definition?

What are the 
weights

4 5 4 4
9 10 11 12

weights 
here?

Recall the 
weights9

5
10

6
11

3
12

4
weights 
matrix.

13

3
14

4
15

1
16

2
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Σ

1 1/3 1/3 1/3 1

j

2 1/5 1/5 1/5 1/5 1/5 1
3 1/5 1/5 1/5 1/5 1/5 1
4 1/3 1/3 1/3 1

Common row
d di d1

5 1/5 1/5 1/5 1/5 1/5 1
6 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1
7 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1

standardized
weights
matrix

7 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1

8 1/5 1/5 1/5 1/5 1/5 1
9 1/5 1/5 1/5 1/5 1/5 1
i w c

cij
ij

ij
=
∑

10 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1
11 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1
12 1/5 1/5 1/5 1/5 1/5 1

j
j
∑

eros13 1/3 1/3 1/3 1
14 1/5 1/5 1/5 1/5 1/5 1
15 1/5 1/5 1/5 1/5 1/5 1

zeros 
implicit
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15 1
16 1/3 1/3 1/3 1



Can you define the spatial lag for map area 16?

1

7
2

6
3

4
4

5
How many 
neighbors 

under a Q1 7 6 4 5
5 6 7 8

u de a Q
definition?

What are the 
weights

4 5 4 4
9 10 11 12

weights 
here?

Recall the 
weights9

5
10

6
11

3
12

4
weights 
matrix.

What’s the 
spatial lag

13

3
14

4
15

1
16

2

spatial lag 
for area 16?
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So, for i = 16, the spatial lag 
operator w16j yj is given by:

16j

∑
=

=
16

1616

j

jjj yww
=1j

72114131
=++=

(again zeros not shown)

7.21
3

4
3

3
3

=++=

(again, zeros not shown)

And how do we describe 
th l f 2 7?
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The previous several slides have 
generated the wij elements basedgenerated the wij elements based 

on adjacency.
There are lots of other options; e.g.,…p ; g ,

• Distance and inverse distance
• k nearest neighbors (knn)• k nearest neighbors (knn)
• Cliff-Ord weights
• Weights matrix should be driven as much as• Weights matrix should be driven as much as 

possible by theory
• GeoDa allows us to create a knn weights matrix• GeoDa allows us to create a knn weights matrix, 

but has difficulty using it
• Lots of options in R• Lots of options in R
• Can edit W in a general text editor
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Feasible Range of Moran’s Ig

• Function of n
• Function of the particular weights matrix 

used
• Function of the structure of the tesselation
• Minimum/maximum theoretical values 

generally just above |±1|
• As a practical matter, the minimum 

empirical value for an irregular lattice is 
generally around -0.6
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In general, the spatial lag is g , p g
expressed (in matrix notation) as:

W
==

∑∑
ji 1616

Wy =
==
∑∑ w yj j
j

i
i 11

where W is a (16 x 16) weights matrix and

i (16 1) l ty is a (16 x 1) column vector
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Some interesting questions that 
might be addressed using spatialmight be addressed using spatial 

lag operator: 

• Local tax rates
(“spillover” in y?)( spillover  in y?)

• Expenditures for police
(“spillover” in x?)( spillover  in x?)

• Demographic analysis:   Are Quitman & 
Tallahatchie counties (two contiguous counties inTallahatchie counties (two contiguous counties in 
the Mississippi Delta) really two separate 
observations?

(“spillover” in ε ?)
UKY 2011



We can simplify the expression 
f M ’ I i t i l bfor Moran’s I using matrix algebra

nn⎛ ⎞

n
w y y y yij i j

j

n

i

n⎛
⎜
⎜
⎜

⎞
⎟
⎟
⎟

− −
==
∑∑ ( )( )

11I n

w y yij
nn

ji

i
n=

⎜
⎜
⎜
⎜

⎟
⎟
⎟
⎟ −

==

∑∑ ∑( ) ( )

11

2
w y yij

ji
i

i⎝⎜ ⎠⎟== =
∑∑ ∑( ) ( )

11 1

Assume W row standardized and z = y y

WzzI '
=

Assume W row standardized and zi = yi -y
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Expected Value of Moran’s IExpected Value of Moran s I
Under Hypothesis of No Spatial 

Autocorrelation

E I( ) 1E I
n

( ) = −
−1
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Variance of Moran’s I Under Hypothesis 
f N S ti l A t l tiof No Spatial Autocorrelation

• Theoretical variance:  very messy
• Cliff & Ord (1973; 1991) derived the theoretical 

asymptotic moments of I (under two different 
ti di th DGP)assumptions regarding the DGP)

• Boots & Tiefelsdorf (1995) have derived the exact 
(small sample) moments of I but again it’s messy(small sample) moments of I, but, again, it s messy

• Anselin & Bera (1998:267) give the first two 
moments of I for OLS errorsmoments of I for OLS errors

• Again… GeoDa derives an empirical standard 
deviation using a permutation approachdeviation using a permutation approach
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If n is large…

Z I E I
V I

=
− ( )

( )Var I( )
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Global Geary’s cGlobal Geary s c

w y yij i j
nn⎛

⎜
⎜

⎞
⎟
⎟

−∑∑ 2( )

c n
y y

nn

j j
ji
n=

−
⎜
⎜
⎜
⎜

⎟
⎟
⎟
⎟

==

∑∑

∑∑

∑

1 11

2

( )

w y yij
ji

i
i⎝

⎜
⎜ ⎠

⎟
⎟ −

== =
∑∑ ∑2

11

2

1
( ) ( )

Can we deconstruct this?
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Expected Value of Geary’s cp y
Under Hypothesis of No 
Spatial A tocorrelationSpatial Autocorrelation

E c( ) =1( )
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As with Moran’s I, the variance of 
Geary’s c under hypothesis of no spatial 

autocorrelation is messyy

• But, Cliff & Ord (1973; 1981) derived the , ( ; )
theoretical asymptotic moments of c

• GeoDa doesn’t provide access to this test statisticp
• As with Moran’s I, under the null hypothesis of no 

spatial autocorrelation, c is asymptotically ~ N(0,1)spatial autocorrelation, c is asymptotically  N(0,1)
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Thus, if n is large…

E( )Z c E c
Var c

=
− ( )

( )Var c( )
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M f ti lMeasures of spatial 
autocorrelation areautocorrelation are 
scale dependent
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Moran’s I = -1.00 Moran’s I = +0.33
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LISA St ti tiLISA Statistics
Standard citation:Standard citation:
Anselin, Luc.  1995.  “Local Indicators of 
Spatial Association – LISA ” GeographicalSpatial Association – LISA.  Geographical 
Analysis 27:93-115.
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Anselin’s Moran ScatterplotAnselin s Moran Scatterplot
Standard citation:Standard citation:
Anselin, Luc.  1996.  “The Moran Scatterplot as 
an ESDA Tool to Assess Local Instability in y
Spatial Association.”  Pp. 111-125 in Fischer, 
Manfred, Henk J. Scholten, and David Unwin 
(eds.)  Spatial Analytical Perspectives on GIS: 
GISDATA 4 (London: Taylor & Francis).

Terrific ESDA tool

UKY 2011



Moran Scatterplot of PPOV 
(1st Order Queen Weights)(1st Order Queen Weights)

H-HL-H

L-L H-L
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Moran Scatterplot of PPOV
Good way to check the outliersGood way to check the outliers

•
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LISA Map of PPOV
(1st Order Queen Weights)(1st Order Queen Weights)
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LISA Map of PPOV
(1st Order Queen Weights)(1st Order Queen Weights)
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Testing for spatial 
autocorrelation in yourautocorrelation in your 

data is important
Unfortunately, identifying and 

quantifying the extent of spatial q y g p
autocorrelation doesn’t tell you 

what’s causing itg
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It does alert you to the presence 
f S ti l “Eff t ” ( S ti lof Spatial “Effects” (or Spatial 

“Processes”) at work in your data) y

Spatial dependence
Spatial heterogeneity

• Conceptually, these are very different processes 
and thus are modeled in very different waysy y

• Each precludes a straightforward application of 
standard econometric models

UKY 2011
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And when spatial autocorrelation 
in our data is indicated…

• At least one assumption of the standard linear• At least one assumption of the standard linear 
regression model probably is violated (the 
classical independence assumption)p p )

• The latent information content in the data is 
diminished

• We need to do something about it:
– get rid of it; model it away

take advantage of it; bring it into the model– take advantage of it; bring it into the model
• Either spatial dependence or spatial heterogeneity

(or both) should be entertained as potential data-

UKY 2011
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generating models



Here’s where we pick things up 
tomorrow morningtomorrow morning
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Readings for today
• Anselin, Luc.  1996.  “The Moran Scatterplot as an ESDA Tool to Assess 

Local Instability in Spatial Association.”  Pp. 111-125 in Fischer, Manfred, 
Henk J. Scholten, and David Unwin (eds.)  Spatial Analytical , ( ) p y
Perspectives on GIS: GISDATA 4 (London: Taylor & Francis).

• Tolnay, Stewart E., Glenn Dean, & E.M. Beck.  1996.  “Vicarious 
Violence: Spatial Effects on Southern Lynchings 1890-1919 ” AmericanViolence: Spatial Effects on Southern Lynchings, 1890-1919.   American 
Journal of Sociology 102(3):788-815.

• Getis, Arthur.  2007.  “Reflections on Spatial Autocorrelation.”  Regional 
S i d U b E i 37 491 496Science and Urban Economics 37:491-496.

• Getis, Arthur.  2008.  “A History of the Concept of Spatial Autocorrelation: 
A Geographer’s Perspective.”  Geographical Analysis 40:297-309.

• Anselin, Luc.  2005.  Exploring Spatial Data with GeoDa: A Workbook, 
(chapters 15-18).

• Anselin Luc 2005 Spatial Regression Analysis in R: A Workbook
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• Anselin, Luc.  2005.  Spatial Regression Analysis in R: A Workbook, 
(chapter 3).



Afternoon Lab
Spatial autocorrelation 

(using GeoDa & R)(using GeoDa & R)
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Questions?Q
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