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Review of yesterday
• Global & local spatial autocorrelation

• Moran’s I
• Geary’s c
• LISA statistics

M tt l t• Moran scatterplot

• Weights matrices
• Spatial lag operator
• Spatial processesp p

• Spatial heterogeneity
• Spatial dependence
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Questions?
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Plan for todayPlan for today
• Spatial processes

i l h i– spatial heterogeneity
– spatial dependence

• Spatial regression models• Spatial regression models
• Various specifications for spatial 

dependencedependence
– spatial lag model
– spatial error modelp
– higher-order models

• Afternoon lab
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– spatial regression modeling in GeoDa & R



Recall, we said yesterday:
When spatial autocorrelation in ourWhen spatial autocorrelation in our 

data is indicated…
• At least one assumption of the standard linear• At least one assumption of the standard linear 

regression model is violated (the classical 
independence assumption)p p )

• The latent information content in the data is 
diminished

• We need to do something about it:
– get rid of it; model it away

take advantage of it; bring it into the model– take advantage of it; bring it into the model
• Either spatial dependence or spatial heterogeneity

(or both) should be entertained as potential data-
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Worth repeating…

For many spatial analysts, the term 

p g

spatial heterogeneity refers to 
variation in relationships over space.
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So, how do we proceed?
There’s no agreed-upon formal 
roadmap for how to conduct aroadmap for how to conduct a 

spatial data analysis, but certainly 
some steps must precede othersome steps must precede other.

Usually it goes something like this…
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Recommended Steps in 
Spatial Data AnalysisSpatial Data Analysis (1)

• EDA on variables; ESDA on variables; look for 
l b l d l l tt f ti l t l tiglobal and local patterns of spatial autocorrelation 

under different neighborhood specifications
– put your theory hat on consider possible structuralput your theory hat on, consider possible structural 

covariates of dependent variable
– transform variables as necessary; outliers?

i ll i t tli ?– visually inspect your maps; outliers?
– test different weights matrices
– global and local tests for spatial autocorrelationglobal and local tests for spatial autocorrelation
– examine Moran scatterplot; outliers?
– decisions about outliers
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– look for extent of, and possible amelioration of, spatial 
heterogeneity



Recommended Steps in 
Spatial Data AnalysisSpatial Data Analysis (2)

• EDA on variables; ESDA on variables; look for 
global and local patterns of spatial autocorrelationglobal and local patterns of spatial autocorrelation 
under different neighborhood specifications

• OLS baseline model and accompanying y g
diagnostics
– Specify model and run in OLS; iterate this for other 

specificationsp
– map residuals & be on lookout for such things as 

geographic clustering, variance nonstationarity, possible 
spatial regimes; outliers?

– examine the diagnostics; where are your problems?
– What do the LM diagnostics suggest wrt spatial 

dependence modeling
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– run model using GWR to further understand spatial 

structural variance



Recommended Steps in 
Spatial Data AnalysisSpatial Data Analysis (3)

• EDA on variables; ESDA on variables; look for 
global and local patterns of spatial autocorrelation 
under different neighborhood specifications

• OLS baseline model and accompanying 
diagnostics
C t f ti l h t it if i di t d• Correct for spatial heterogeneity if indicated
– carefully select covariates
– surface trend fittingg
– spatial regime analysis
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Recommended Steps in 
Spatial Data AnalysisSpatial Data Analysis (4)

• EDA on variables; ESDA on variables; look for 
global and local patterns of spatial autocorrelation 
under different neighborhood specifications
OLS baseline model and accompanying• OLS baseline model and accompanying 
diagnostics

• Correct for spatial heterogeneity if indicatedCorrect for spatial heterogeneity if indicated
• With possible controls for spatial heterogeneity, 

estimate and compare spatial models
– spatial lag model?
– spatial error model?
– mixed lag & error model (SARAR)?
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– what’s your theory?
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Recommended Steps in 
Spatial Data Analysis (5)Spatial Data Analysis (5)

• EDA on variables; ESDA on variables; look for 
global and local patterns of spatial autocorrelationglobal and local patterns of spatial autocorrelation 
under different neighborhood specifications

• OLS baseline model and accompanying p y g
diagnostics

• Correct for spatial heterogeneity if indicated
• With possible controls for spatial heterogeneity, 

estimate and contrast spatial error and spatial lag 
model resultsmodel results

• Iterate these steps as necessary
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S ’ ’So, that’s where we’re 
headed todayeaded oday

Questions?
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Carrying out a Spatial Data 
Analysis Recall Step 1Analysis.  Recall Step 1…

• EDA on variables; ESDA on variables; look for ; ;
global and local patterns of spatial 
autocorrelation under different neighborhood 
specificationsspecifications
– put your theory hat on, consider possible structural covariates of 

dependent variable
t f i bl tli ?– transform variables as necessary; outliers?

– visually inspect your maps; outliers?
– test different weights matrices

l b l d l l f i l l i– global and local tests for spatial autocorrelation
– examine Moran scatterplot; outliers?
– decisions about outliers
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– look for extent of, and possible amelioration of, spatial 
heterogeneity



Visualizing Spatial DataVisualizing Spatial Data

• Part of your ESDA
• Goal is to “see” the data; map the data;Goal is to see  the data; map the data; 

plot the data; look for patterns
• Mapping software is a fundamental toolMapping software is a fundamental tool
• Statistical analysis software is a 

fundamental toolfundamental tool
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Square root transformation of PPOV variable
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Checking for outliers
and what to do?
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Checks for linearity
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Very often a unit of observation may 
not stand out as an outlier in anynot stand out as an outlier in any 

univariate or bivariate plots, but might 
be a “spatial outlier”be a spatial outlier

Sqrt(PPOV)
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Exploring Spatial Data with anExploring Spatial Data with an 
eye on spatial processes:

S ti l H t itSpatial Heterogeneity
Spatial DependenceSpatial Dependence
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Exploring 1st Order Variationp g
Spatial Heterogeneity

• Mapping• Mapping
– Looking for & gaining some understanding of 

tt i th i blpatterns in the variables
• Similar map patterns among different variables
• “Opposite” map patterns for some variablespp p p

– Looking for global trend or “drift” in the data 
(especially in your response variable)

• Might there be something to model using our spatial 
coordinates?

Looking for spatial outliers
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– Looking for spatial outliers



Exploring 1st Order Variationp g
Spatial Heterogeneity

• Mapping
• ClusteringClustering

– Geodemographic clustering
• Mapping of clustersMapping of clusters
• Very useful device for spatial sampling
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Exploring 1st Order Variationp g
Spatial Heterogeneity

• Mapping
• ClusteringClustering
• Spatial moving averages
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Exploring 1st Order Variationp g
Spatial Heterogeneity

• Mapping
• Clustering• Clustering
• Spatial moving averages

R i• Regression
– Trend surface

G hi ll W i ht d R i– Geographically Weighted Regression
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Trend Surface RegressionTrend Surface Regression
• Spatial drift in mean

– polynomial regression in coordinates of the 
observations (x,y)

$ $ $ 2 $ 2 $z = " + $1x + $2y + $3x2 + $4y2 + $5xy + g

• Interpretation/problems
– spatial interpolation
– no meaningful substantive interpretation g p

(geographic determinism)
– multicollinearity

UKY 2011

y
– problems at the boundaries of study area 



First-Order Trend Surface?

Logodds child 
t t 1990
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poverty rate:  1990



Second-Order Trend Surface?

Logodds child 
t t 1990
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poverty rate:  1990



Two useful devices for exploring 
local spatial autocorrelation in ESDAlocal spatial autocorrelation in ESDA 

(reminder from yesterday)
• Moran scatterplot
• LISA statistics
• Both are based on the notion of a local spatial 

autocorrelation statistic
PPOV
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Local Indicators of Spatial 
Association (LISA)

A ti f t ti it• Assess assumptions of stationarity
• Indicate local regions of non-stationarity

(“ ” “ ”)(“hotspots” or “pockets”)
• Allow for decomposition of global measure 

into contributions of individual observations
• Identify outliers or spatial regimesy p g
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Spatial autocorrelationSpatial autocorrelation 
as a nuisance

Or, better said, spatial autocorrelation 
arising from a mismatch between aarising from a mismatch between a 
spatial process and your particular 

window on that processwindow on that process
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Nuisance autocorrelation:  Mismatch between 
the spatial process and the unit of observation

Sqrt(PPOV)
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Spatial autocorrelation as a 
b t tisubstantive process
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Spatial autocorrelation as a 
substantive process

G iSqrt(PPOV) • Grouping  
processes

G• Group-
dependent  
processesprocesses

• Feedback 
processesprocesses
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Said another way:  consider some 
(unknown) spatial process and associated(unknown) spatial process and associated 

attribute values for areas across region
I t ti ?• Interaction?

• Reaction 
Sqrt(PPOV)

(to some 
other set of 

i bl )?variables)?
• Nuisance?
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If reaction…

• Then a regression structure is 
appropriate to think aboutappropriate to think about

• Focus is on spatial heterogeneity
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If interaction…

• Then we must consider a model 
with a non-diagonal covariance g
structure

• Focus is on spatial dependence• Focus is on spatial dependence 
(spatial interaction)
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If both reaction and interaction 
b li d t b t kare believed to be at work:

• Spatial regression model; spatial heterogeneity p g p g y
in the design matrix;  spatial interaction in the 
residuals (“spatial error model”); or…

• Spatial regression model; spatial heterogeneity 
in the design matrix; with an explicit expression 
controlling for spatial interaction in thecontrolling for spatial interaction in the 
dependent variable (“spatial lag model”)

• Both?• Both?

We’ve arrived (finally) at the 
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One of the earliest spatial econometric 
d l l d th “A t l t dmodels explored was the “Autocorrelated

Errors Model” or Spatial Error Model

y X u= +β First-order variation comes 
only through Xβ ; second-
d i ti i t d

u Wu= +λ ε
order variation is represented 

as an autoregressive, 
interactive effect through λWu

E u( ) = 0 E
E I

( )
( ' )
ε = 0

2E uu C( ' ) = E I( ' )εε σ= 2

From this basic specification several different
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From this basic specification several different 
equivalent expressions can be derived



Substitution of the lower equation into 
the top equation yields:

u Wu− =λ ε
I W u− =λ ε( )
u I W= − −λ ε( ) 1

( )y X I W= + − −β λ ε
( )

1
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( )y X I W+β λ ε



It turns out thatIt turns out that…

( ) ...I W I W W W− = + + +−λ λ λ λ1 2 2 3 3( )

and therefore that…
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An alternative (reduced form) 
expression for the Spatial Error 

Model becomes:Model becomes:

Xβ [ ]I W W Wλ λ λ2 2 3 3y X= β + + + + +[ ...]I W W Wλ λ λ ε2 2 3 3

Alternatively, going back to the original 
(structural form) specification of the spatial(structural form) specification of the spatial 
error model, substitution of the top equation 

into the lower equation yields a slightly 
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q y g y
different, equivalent, specification…



Substitution of top into bottom:

y X u− =β
y X W y X− = − +β λ β ε( )
y X Wy WX= + − +β λ λ β ε

This particular substitution process leads 
to what is often called a “Spatial Durbinto what is often called a Spatial Durbin 
Model” (or “Common Factors Model”)

UKY 2011

Discuss later… time permitting



Spatial Lag ModelSpatial Lag Model

εβρ ++= XWyy εβρ ++= XWyy

Here, first-order variation comes only 
th h Xβ d d i ti ithrough Xβ ; second-order variation is 

represented as an autoregressive, 
interactive effect through ρWy

Analogous to a distributed lag in a time-series model
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Analogous to a distributed lag in a time-series model



Let’s rearrange the terms in this 
spatial lag model just a bit…

ερβ ++= WyXy
εβρ +=− XWyy
εβρ

11

)( +=− XyWI
ερβρ 11 )()( −− −+−= WIXWIy
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and recalling thatand recalling that…

...)( 33221 WWWIWI ρρρρ +++=− −)( ρρρρ
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We thus have this revised (reduced (
form) expression for the Spatial 

Lag Model:Lag Model:

[ ] β3322 XWWWI[ ]
[ ]ερρρ

βρρρ ...
3322

3322

+++++
++++=

WWWI
XWWWIy

[ ]ερρρ ...+++++ WWWI

Can you say in words what 
this model is telling us?
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Comparing the two models 
(structural specification)

Spatial Error ModelSpatial Error Model:

y X u= +βy X u
u Wu
= +

+
β

λ ε
Spatial Lag Model

u Wu= +λ ε
Spatial Lag Model:

εβρ ++= XWyy
UKY 2011

εβρ ++= XWyy



Comparing the two models 
(reduced form specification)(reduced form specification)

Spatial Error Model:

y X= β + + + + +[ ...]I W W Wλ λ λ ε2 2 3 3y β [ ]

S ti l L M d lSpatial Lag Model:

[ ] βρρρ 3322 ++++= XWWWIy [ ]
[ ]ερρρ

βρρρ
...

...
3322 +++++
++++=

WWWI
XWWWIy
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B th ti l dBecause the spatial error and 
spatial lag models are not nested 

ifi i i h bspecifications, i.e., they cannot be 
derived from some general 

specification by setting terms to 
zero, they are usually presented 

(e.g., in GeoDa as alternative 
model specifications: either/orp
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So how do we know which 
model to use?model to use?
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GeoDa output from an OLS 
regression run looks like thisregression run looks like this
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For now, we want only the next page



Part of the GeoDa output from an 
OLS regression run looks like thisOLS regression run looks like this
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This will be covered in moreThis will be covered in more 
detail in this afternoon’s lab

Questions for now?
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Readings for today
• Anselin Luc and Anil Bera 1998 “Spatial Dependence in Linear• Anselin, Luc, and Anil Bera.  1998.  Spatial Dependence in Linear 

Regression Models with an Introduction to Spatial Econometrics.”  
Chapter 7 (pp. 237-289) in Aman Ullah and David Giles (eds.) Handbook 
of Applied Economic Statistics (New York:  Marcel Dekker).pp ( )

• Anselin, Luc.  2002.  “Under the Hood:  Issues in the Specification and 
Interpretation of Spatial Regression Models.”  Agricultural Economics
27(3):247-26727(3):247 267.

• Baller, Robert D., and Kelly K. Richardson.  2002.  “Social Integration, 
Imitation, and the Geographic Patterning of Suicide.”  American 
Sociological Review 67(6):873 888Sociological Review 67(6):873-888.

• Sparks, Patrice Johnelle, & Corey S. Sparks.  2010.  “An Application of 
Spatially Autoregressive Models to the Study of US County Mortality 
R t ” P l ti S d Pl 16 465 481Rates.”  Population, Space and Place 16:465-481.

• Anselin, Luc.  2005.  Exploring Spatial Data with GeoDa: A Workbook, 
(chapters 22-25).
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• Anselin, Luc.  2005.  Spatial Regression Analysis in R: A Workbook, 
(chapter 6).



Afternoon LabAfternoon Lab

Spatial RegressionSpatial Regression 
Modeling in GeoDa & Rg
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Areas of needed research:
• Spatial panel models; space-time 

interactionsinteractions
– Jihai Yu

– Yanbing Zheng– Yanbing Zheng

• Latent continuous variables; binary 
dependent variable; counts; etcdependent variable; counts; etc.

• Flow models
Endogeno s eighting matrices• Endogenous weighting matrices
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Th k f ti i ti !!Thanks for your participation!!
See you this afternoonSee you this afternoon
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