

quantitative initiative for policy and social research

Applied Survey Data Analysis

Module 2: Variance Estimation March 30, 2013

Approaches to Complex Sample Variance Estimation

- In simple random samples many estimators are linear estimators where the sample size n is fixed. A linear estimator is a linear function of the sample observations.
- When survey data are collected using a complex design with unequal size of clusters or when weights are used in estimation, most statistics of interest will not be simple linear function of the observed data.

$$\overline{y}_{w} = \frac{\sum_{h} \sum_{\alpha} \sum_{i} w_{h\alpha i} y_{h\alpha i}}{\sum_{h} \sum_{\alpha} \sum_{i} w_{h\alpha i}} = \frac{\sum_{h} \sum_{\alpha} \sum_{i} u_{h\alpha i}}{\sum_{h} \sum_{\alpha} \sum_{i} v_{h\alpha i}} = \frac{u}{v}$$

Where:

 $y_{h \propto i}$ =Measurement on unit *i* in cluster α in stratum *h* $w_{h \propto i}$ =Corresponding weight

qipsr

Two approaches

- Replication or Resampling Methods technique: -Jackknife Repeated Replication
 Balanced Repeated Replication
- Taylor Series approximation or linearization technique:

-Approximate nonlinear statistics as a linear function of sample totals

-Specific form of the variance estimator for each statistic

Replication Methods

- Replication methods use information on variability between estimates drawn from different subsamples of an overall sample to make inferences about variance in the population
- Steps in Replicated Methods:
 - 1. A defined number (K) of subsets (replicate samples) of the full sample are selected.
 - 2. Create revised weight for replicate sample.
 - 3. Compute weighted estimates of population statistic of interest for each replicate using replicate weight.
 - 4. The variability between these subsample replicate statistics are used to estimate the variance of the full sample statistic.

Jackknife Repeated Replication (JRR)

- The Jackknife Repeated Replication (JRR) is applicable to a wide range of complex sample designs including designs in which two or more PSUs are selected from each of h=1,...,H primary stage strata.
- Using Jackknife for unstratified surveys, one PSU at a time is omitted from the sample and the others reweighted to keep the same total weight (known as the JK1 Jackknife).
- For stratified designs, Jackknife removes one PSU at a time, but reweights only the other PSUs in the same stratum.

JRR: Constructing Replicates, Replicate Weights

- Suppose there are H strata with a_h clusters.
- Each replicate is constructed by deleting one or more PSUS from a single stratum
- Replicate weight values for cases in the deleted PSUs are assigned a value of "0" or " missing"
- The replicate weight for each replicate multiplies the weights for remaining cases in the deleted stratum by a factor of a_h/[a_h -1].
- Replicate 1 weight values remain unchanged for cases in all other strata.

JRR: Constructing Replicates, Replicate Weights (2)

 Each Stratum will contribute a_h-1 unique JRR replicates, yielding a total of

$$R = \sum_{h=1}^{H} (a_h - 1) = a - H = \# clusters - \# strata$$

JRR: Constructing Estimates

• The weighted estimate for each of r=1,...R replicates:

• The full sample estimate of the mean is:

$$\hat{\mathbf{q}} = \frac{\sum_{i=1}^{n} y_i \cdot w_i}{\sum_{i=1}^{n} w_i}$$

JRR: Estimating the Sampling Variance

$$var_{JRR}(\hat{q}) = \sum_{r=1}^{\infty} (\hat{q}_r - \hat{q})^2$$

Balanced Repeated Replication(BRR)

- Balanced Repeated Replication (BRR) is a half-sample method that was developed specifically for estimating sampling variances under two PSU- per-stratum sample designs.
- A half sample is defined by choosing one PSU from each stratum.
- A complement of a half sample is made up of all those PSUs not in the half sample. A complement is also a half sample.
- There are 2^H possible half samples and their complements. We only need H half samples for variance estimation.

Hadamard Matrix for a H=4 strata design

BRR Replicate		Stratum			
	1	2	3	4	
1	+	+	+	-	
2	+	-	-	-	
3	-	-	+	-	
4	-	+	-	-	

BRR: Constructing Replicates and Replicate Weights

- H replicates are created based on the deletion pattern (+ and -) in the Hadamard matrix
- Replicate weight is then created for each of the h=1,..., H BRR sample replicates.
- Replicate weight values for cases in the complement half-sample PSUs are assigned a value of "0" or " missing"
- Replicate weight values for the cases in the PSUs retained in the half-sample are formed by multiplying the full sample analysis weights by a factor of 2.

BRR: Constructing Estimates

• The weighted estimate for each of r=1,...R replicates:

$$\hat{\mathbf{q}}_{\mathbf{r}} = \bar{y}_{r} = \frac{\sum_{i \in rep}^{n_{rep}} y_{i} \cdot w_{i,rep}}{\sum_{i \in rep}^{n_{rep}} w_{i,rep}}$$

• The full sample estimate is:

$$\hat{\mathbf{q}} = \frac{\sum_{i=1}^{n} y_i \cdot w_i}{\sum_{i=1}^{n} w_i}$$

BRR: Estimating the Sampling Variance

$$var_{BRR}(\bar{y}_w) = var_{BRR}(\hat{q}) = \frac{1}{R} \sum_{r=1}^{R} (\hat{q}_r - \hat{q})^2$$

Balanced Repeated Replication

- Pro
 - Relatively few computations
 - Asymptotically equivalent to linearization methods for smooth functions of population totals and quantiles
- Con
 - 2 psu per stratum

Linearization (Taylor Series Method)

- Linearization techniques make mathematical adjustments so that standard 'linear estimators' can be applied to data.
- Linearization is a widely used technique for estimating variance of any functions of the weighted totals. These include ratios, subgroup differences in the ratios, regression coefficients and correlation coefficients.

Taylor Series Linearization

The estimates under TSL

• Consider the weighted estimates of the population mean of variable y

$$\overline{y}_{w} = \frac{\sum_{h} \sum_{\alpha} \sum_{i} w_{h\alpha i} y_{h\alpha i}}{\sum_{h} \sum_{\alpha} \sum_{i} w_{h\alpha i}} = \frac{\sum_{h} \sum_{\alpha} \sum_{i} u_{h\alpha i}}{\sum_{h} \sum_{\alpha} \sum_{i} v_{h\alpha i}} = \frac{u_{i}}{v_{i}}$$

• Rewriting it as a linear combination of weighted sample totals using TSL

$$\bar{y}_{w,TSL} = \frac{u_0}{v_0} + (u - u_0) \left[\frac{\partial \bar{y}_{w,TSL}}{\partial u} \right]_{u = u_0, v = v_0} + (v - v_0) \left[\frac{\partial \bar{y}_{w,TSL}}{\partial v} \right]_{v = v_0, u = u_0} + remainder$$

$$\bar{y}_{w,TSL} \cong \frac{u_0}{v_0} + (u - u_0) \left[\frac{\partial \bar{y}_{w,TSL}}{\partial u} \right]_{u = u_0, v = v_0} + (v - v_0) \left[\frac{\partial \bar{y}_{w,TSL}}{\partial v} \right]_{v = v_0, u = u_0}$$

$$\overline{y}_{w,TSL} \cong constant + (u - u_0) \cdot A + (v - v_0) \cdot B$$

Where

$$A = \frac{\partial \bar{y}_{w,TSL}}{\partial u} \bigg|_{u=u_0, v=v_0} = \frac{1}{v_0}; B = \frac{\partial \bar{y}_{w,TSL}}{\partial v} \bigg|_{u=u_0, v=v_0} = -\frac{u_0}{v_0^2};$$

The Variance under TSL

• The approximate variance of the "linearized' form of the estimate $\bar{y}_{w,TSL}$

$$var(\bar{y}_{w,TSL}) \cong var[constant + (u - u_0) \cdot A + (v - v_0) \cdot B]$$

$$\cong 0 + A^2 var(u - u_0) + B^2 var(v - v_0) + 2ABcov(u - u_0, v - v_0)$$

$$\cong A^2 var(u) + B^2 var(v) + 2ABcov(u, v)$$

Where:

Applied

$$A = \frac{\partial \bar{y}_{w,TSL}}{\partial u} \bigg|_{u=u_0, v=v_0} = \frac{1}{v_0}; B = \frac{\partial \bar{y}_{w,TSL}}{\partial v} \bigg|_{u=u_0, v=v_0} = -\frac{u_0}{v_0^2}; and$$

 u_0, v_0 are the weighted sample totals computed from the survey data.

• Therefore, the sampling variance of the nonlinear estimate $\bar{y}_{w,TSL}$ is approximated by a simple algebraic function of quantities that can be readily computed from the complex sample survey data.

$$var(\bar{y}_{w,TSL}) \cong \frac{var(u) + \bar{y}_{w,TSL}^2 \cdot var(v) - 2 \cdot \bar{y}_{w,TSL} \cdot cov(u,v)}{v_0^2}$$

Linearization (Taylor Series Methods)

- Pro:
 - Linearization technique is useful if the estimate can be expressed as a function of sample totals
 - Theory is well developed
 - The default is most software package for complex samples
- Con:
 - Finding partial derivatives may be difficult
 - Different method is needed for each statistic
 - The function of interest may not be expressed a smooth function of population totals or means
 - Accuracy of the linearization approximation

