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| ntroduction

» Exciting methodological toolkit

» Multilevel modeling is not monolithic

— There are lots of different types of model speaiions that fall
under the umbrella.

— Various specifications carry different substantivterpretations.
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|. Motivation and Core | ssues




Multilevel Data

Contain multipldevels of analysiswith each level consisting
of distinct units of analysis.

Most common form of multilevel dathierarchical data

— Two-level structure: Units from the lowest levélbmalysis
(level-1 units) areested withinunits from a higher level of
analysis (level-2 units)

» Data are “clustered”
» Level-2 units are referred to as “clusters”
— Three-level structure: Third level is present

Multilevel Data

Examples

Education: students (level-1 units) nested wiithools (level-2
units)

* Three levels: students nested within schools dastéin
states

Individuals nested within cities

Voters nested within congressional districts

Voters nested within time (or temporal contexts)
Panel data and time-series cross-sectional (T8&8)

+ What's a sufficient number dével-2 units, or clusters?

— Rough guideline: >15

» What's a sufficient number fatuster sizes (number of

observations per cluster/level-2 unit)?

— Cluster sizes can vary; at least 2 and more I&éough
guideline)




Multilevel Data

Student | School Y X1 X2 X3 X4
1 1 54 2 32 1 44
2 1 64 4 25 1 44
3 1 87 9 45 1 44
4 2 24 4 44 0 36
5 2 98 7 32 0 36
6 2 65 6 22 0 36

* X1 and X2
are level-1
variables

* X3 and X4
are level-2
variables.

* Balanced
data: cluster
sizes are
equal

Panel / Time-Series Cross-Sectional Data

i i t Y X1 X2 X3 X4
1 1 1 54 2 32 1 44
2 1 2 64 4 25 1 44
3 1 3 87 9 45 1 44
4 2 1 24 4 44 0 36
5 2 2 98 7 32 0 36
6 2 3 65 6 22 0 36
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Motivation

* Types of phenomena we're interested in are myéilad and
complex.

— Incorporating these layers enhances our substaexplanations
of phenomena.

» People don’t make choices or behave in a vacubenets a
context in which they act.

» This contextual, or situational, variation may dav
consequences for how people behave.

* Most simple cross-sectional data ignores thisctiine; “naive
pooling”

M otivation

» Parsing explained variance in the dependent Veriadtween
individual versusaggregatdevels of analysis.
— Student versus school effects on performance.




Key Topics

1. Unobserved heterogeneit{in the dependent variable)
— Between-cluster heterogeneity in the dependemivar

» Unobserved factors specific to each cluster thifuénce the
dependent variable; factors are shared by obsenstvithin each
cluster.

» Unmeasured, unobserved, and unimagined differdmewgeen
clusters.

— Method: Random intercept models (aka, random sffec

— UH in a cross-sectional context:
Y, = bo+ byxg; + DX, + €

UH in Hierarchical Context

Figure 1: Nllustration of Unobserved Heterogeneity Across Clusters

Cluster Number

NMate: Dots represent responses within a given cluster. Dashes represent the means of I for each
cluster.




2. Pooling

Key Topics

— Degree to which parameters (e.g., intercept, effeclVs) are
“pulled” toward the pooled (global) effect or reftexithin-

cluster variation.

No
Pooling

Spectrum:

Partial Pooling

Complete
Pooling

3. Distinguish within-cluster, between-cluster, ad total

variation

— “Cluster confounding”

Within-Cluster v. Between-Cluster Variation

Student | School Y X1 X2 X3 X4
1 1 54 2 32 1 44
2 1 64 4 25 1 44
3 1 87 9 45 1 44
4 2 24 4 44 0 36
5 2 98 7 32 0 36
6 2 65 6 22 0 36




Cluster Confounding

Figure 2: Illustration of Cluster Confounding

Within-Cluster Effect
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Key Topics

4. Causal heterogeneity

— When the relationship between X and Y varies acchsster
— How higher level variables shape lower-level iefehips.
— Methods: Random coefficient models




I1. Linear Variance Components Model

Modeling Clustered Data

» We'll start simple: No independent variables
» Linear variance components model

» We'll focus on making inferences abaltister meand.e., mean o¥ for
each level-2 unit.




Pooling
» Degree to which each cluster mean is “pulled” tae

overall, global mean.

Spectrum:
No Partial Pooling Complete
Pooling----------=-=-=meme oo Pooling

* Important questions:
— What does each approach imply?

— Under what conditions would we want to rely ontegpe when

making inferences about cluster means?
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Modeling Clustered Data

» No Pooling:
— Within-clustercentral tendency and variation are all that matter.
— Between-clustevariation ignored.
— Generalize (in terms of means of the DV) one eluat a time (in
isolation) using cluster means
— Estimation techniquérixed-effects (within) estimator

e Complete Pooling:
— Ignores clustering/hierarchical structure.
— Doesn't distinguish within- versus between-clustaiation
— Generalization: “Global mean” or “grand mean”
» Balanced data: mean of DV over entire sample
» Unbalanced data: mean of the cluster means

— Estimation techniquePlain-vanilla pooled regression (e.g.,
OLS)

Modeling Clustered Data

» Partial Pooling:

— Weighted averagketween no pooling and complete pooling
extremes.

» Borrows information from completely pooled mean to
generate refined estimate of cluster mean (thiugab
“uninformative” clusters)

— Partially-pooled estimates of cluster meame going to be
weighted averages of the “no pooling cluster means!'the
“completely-pooled mean of the cluster means.”

— Estimation techniquaandom intercept (aka, random effectg
model

— Considerations affecting the degree of partialipg@

N—r



Modeling Clustered Data

Level-1 units indexed=1, 2, ..N. Level-2 units indexep:l, 2, ..J.
N level-1 units nested withidlevel-2 units.

[Level-1 equation] Yj = 180j t &
[Level-2 equation] :801' = Voo ¥ Zj
Reduced formersion: ¢; = unobserved heterogeneity (cluste

— level
Yi = Voo T4 tE _) _ .
var({,)=¢ : Between-cluster variance.

var(g;)= 6: Within-cluster variance.
Intraclass correlationo= ¢/ /(¢ + 6)
* Key specification decisiotiow we treai is directly connected to the
three approaches just discussed
— No pooling?
— Complete pooling?
— Partial pooling?

Cluster Means and Partial Pooling

______________________________ Pooled, global
Obama iy mean

Approval

AL CA OH CT MD
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=—No Pooling Cluster Mean ===Partially Pooled Cluster Mean




| ntraclass Correlation

* Intraclass correlationo= ¢ /(¢ + 6

» Can be thought of as:
— Degree of cluster-level unobserved heterogeneity
— Degree of within-cluster dependence
» Connection to reliability
— “Cluster differentiation” or “uniqueness”

* What makesplarge or small?
— Depends on changesgnand changes il

Testing for Unobserved Heterogeneity

* Is there significant between-cluster UH?
* Hypothesis test:

Ho: ¢=0

Hy: ¢>0

* Statistical tests




Shrinkage and Pooling in Random | nter cept
Model

» Shrinkage and pooling are directly related.
— The “weight” that determines how much the withinster means are
pulled toward the pooled mean
+ Shrinkages the degree to whicf}'s (level-2 residuals) are pulled
toward zero; centers on estimatijts.
* Poolingis the degree to which the cluster means gravitate
toward the global mean ot
— Gives us deeper insight into how much unobsereterbgeneity there
is in the dependent variable.
* Recall that the variance components model (ranicbencept
model w/no IVs) allows fopartial poolingof the cluster
means.

» We can calculate thdegree of partial poolingsing a “pooling
factor.”

Generating Partially-Pooled Level-2 Residuals

» Level-2 residuals from the partially-pooled appioaeflect
how much each cluster deviates from the global mean

» Partially pooled level-2 residuals are called “émcpl Bayes”
(EB) residuals, which uses the “prior” distributiohd
[~ N(O, ¢)], combined with the “data” (how informative the
clusters are individually) to generate a “postérnediction
of { (partially-pooled prediction).

* The smallery is, the more informative the prior and the more
it will drag the predicted toward 0, which is the mean of the
prior distribution (hence, “shrinkage”).




Shrinkage Factor and EB Residuals

_ Y
R Cw+6in
J

* The EB prediction of is:
ZEB: Rj* ZML
i i
* Note thatn; represents the cluster size for clugter

» There will more shrinkage when (note high shrirkkéggassociated
with smallR):

— ¢ is small (informative prior)
— Bis large (uninformative data)
— Cluster sizesn() are small (uninformative data)

Partial Pooling

» Partial poolingis the extent to which partially-pooled cluster mea
gravitate toward the pooled (global) mearYof he pooling factor,
@) can be calculated as:

0
w =1-R, =1- d =
Y+0In, G+ny
The same factors that increase shrinkage of tbevill increase the

degree of partial pooling. Thus, the partially-pabtluster means
will increasingly pool around the global mean when:

— ¢ is small (little differentiation in cluster means)
— 0is large (uninformative clusters)

— Cluster sizes are small (uninformative clusters)
If w= 0, what happens?

If w= 1, what happens?

If 0 < w< 1, what happens?




Pooling

» Shrinkage and pooling factors can be calculat@uusur
model results; note that all we need are the veei@stimates
at each level and the cluster size(s).

» Pooling factors for balanced versus unbalancea. dat
— Balanced?

— In unbalanced data, how will variation in clusae influence
the degree of pooling? How and why?

Calculating Partially-Pooled Cluster Means

* We can use our estimates of pooling factors toutale partially-
pooled estimates of our parameters (in this casesandom
intercepts ;).

* In a model with no independent variablesr partially-pooled

estimates of the random intercepts will be pangigdboled cluster
means

» First, use the following equation

,éoj' —wu+(l-w)y,

« Note thaturepresents the pooled mean (mean of the clustemsjiea
y-bar represents the cluster mean for clugter

* Revisit: If w=0, what happens? =1, what happens?




Partially-Pooled Means
Yi =5 t&
:801' = Voo + Zj
» Second to generate partially-pooled cluster means (@&pts), use:
N _ EB
B, i Voot ¢ j

* Note the similarity to the other equation...

,éoj' =wu+1-w)y,

I11. Random I ntercept Model and Its Alternatives




Modeling Clustered Data

» Let's add independent variables!

» Four approaches (producing different inferencesiithe effect of X on
Y):

1. Complete pooling (OLS)
2. No pooling (fixed effects, or within estimator)
3. Partially pooled (random intercept model)
* Now, we're dealing with partially-poolezbefficients

 Effects of X's on Y are a weighted average betwlecomplete
pooling and no pooling (within) estimates

4. Between estimator (which is also no pooling,ibwa different way
than the within approach).

 Different types of interpretations....

Fixed Effects (Within) Approach

Yi =Yoot BX +{; &
» Two equivalent ways of thinking about this:
1. Dummy variable methddSDV): include unit-specific

dummy variables (leave one as the excluded grd\pdf

the between-unit variation is absorbed in the egts of the
fixed ¢'s.




Fixed Effects (Within) Approach

i j Cluster 1 | Cluster 2 | Cluster 3| Cluster 4| Cluster 5
1 1 1 0 0 0 0
2 1 1 0 0 0 0
3 1 1 0 0 0 0

Fixed Effects (Within) Approach

Yi =Yoot BX +{; &
* Two equivalent ways of thinking about this:

1. Dummy variable methgdlSDV): include unit-specific
dummy variables (leave one as the excluded grd\pdf
the between-unit variation is absorbed in the et of the
fixed ¢'s.

Thus, theB’s arewithin-cluster effects

* LSDV (least squares dummy variable) can be eséichaita OLS
with the inclusion of the unit-specific dummies (us one).

* What happens to level-2 variables?




Fixed Effects (Within) Approach

2. Deviations from means

» Subtract the cluster-specific means from eachevafiteach
variable. Do this for both Y and the X's.

yi\jN =Y 7Y
Xj =% =X,
* Note: (1), the between-unit effect, is eliminated; and (@yh

both approaches explicitly highlight that tBe arewithin-unit
effects.

Fixed Effects (Within) Approach

» To estimate this second approach (deviation frazams),
subtract cluster means, then estimate with OLSgusiese
transformed variables.

* Note that the LSDV and “deviations from means” ajgmhes
produceanalytically equivalenéstimates of.

AN = Wx;]\ny




Between Estimator

« Ignores within-cluster variation, focuses soletyl®tween-cluster
variation

* Regress cluster means of Y on cluster means of X.
—n-l
IBB - Bxx Bxy

* Note: What'’s the relationship between the withind &etween-
cluster versions of a variable?

Yi :yi\jN+yj

— W N
Xj =X X

Random Intercept Model (Partial Pooling)

Level-1 units indexed=1, 2, ..N. Level-2 units indexef-1l, 2, ..J.
N level-1 units nested withidlevel-2 units.

[Level-1 equation] Yi = ,Boj + ,leij t &
[Level-2 equation] IBOj = Voot Zj

Assumptions

& |Xij ~N(0,06)

¢ 1% ~NQOw)
Covg;, &) =0 #i'
CoM¢;.¢;)=0,j# |
Cov(g;,¢}) =0
Covs;, %) =0
Cou{;, %) =0




Two-Level Random | ntercept Model

Reduced formeersion:
Vi Voot { B tE  or.
Vi = Voot BX +{ g

» Fixed partandrandom part.. [note “fixed” versus “random” effects
verbiage.]

Var({)=¢: Between-cluster (level-2) error variance.

Var(g;)=6: Within-cluster (level-1) error variance.

Intraclass correlationp= ¢/ /(¢ + 6

Two-Level Random | ntercept Model
« Adding level-2 predictors

Yi =5 Y BX; +E

Boi = Yoo+ VoW, + ¢

* Reduced-form equation:

Yi = Voo T BX VoW, +{ +




GLS Estimation of Linear Random | ntercept Model

Yi :y00+181Xij +Zj t &

» Again, note that we're dealing with fixe#l
» Can be estimated via GLS and ML; both yield simi&sults.

» Foundation: GLS estimates gf are a weighted average of the
pooled and within estimates 6.

— Partial pooling of coefficients

GL S Estimation of Linear Random I ntercept Model

* Within, between, OLS, and GLS estimates:

AN :Wx:(]vvxy
Bs = BB,y

:BOLS = (vax + Bxx)_l(ny + Bxy)

:BGLS = (vax + anx) _1(vay + any)
0
@+ny

* n = cluster size; this equation assumes balancecdtsteu(i.e., equal
cluster sizes), though you can relax this for uaibedd structure.

* If w=0,[; sreduces tg3,.
+ If w=1, [ sreduces tgi,
 As cluster size increasgs; becomes more similar 1,




Linear Random | ntercept Model

» Goodness-of-fit measures:
— Intraclass correlation coefficien,
— Testing Rl model vs. pooled OLS §H/=0)
— Pooling factor
— R2at each level

¢ R How much variance in the DV are we explainingath
level (R-H & S, 103)? Proportional reduction imaer

2 _ 90_‘91
R "

2 :wo _‘//1
i ¥,

» Subscript O: error variance (at each level) froodei with no 1Vs.
» Subscript 1: error variance (at each level) froodet with IVs.

Additional Measure of Partial Pooling

» A way to summarize the average degree of poodnépr each
random parameter (e.g., random intercept, randopes) is
suggested by Gelman and Hill:

Ve )
var(;)
* We can calculate this for each random parameter.

* What is the numerator and what is the denominator?

— Numerator represents the variance ofpgadially-pooled
residuals (at level 2, for each parameter)

— Denominator: Level-2 error variance.




| nterpretation of Effects for All Approaches

* How do we interpret effects from each approach?

* What do the pooled and RI approaches assume #imut
within- and between-cluster effects?

Within-Cluster v. Between-Cluster Variation

Student | School Y X1 X2 X3 X4
1 1 54 2 32 1 44
2 1 64 4 25 1 44
3 1 87 9 45 1 44
4 2 24 4 44 0 36
5 2 98 7 32 0 36
6 2 65 6 22 0 36

15 5 98 1 18 1 18




ConSI derations for the FE (Within) Estimator

It's an easy way to account for unobserved hetrety in the
response.

* Since the] are treated as fixed, instead of random, the pateot
endogeneity between X agfi(the controversial assumption) is
eliminated.

» Consistent as N and=3 infinity.
» More appropriate for inferring to clusters in saenpnly?

I ssues:
» Overall efficiency loss by eliminating between gpovariation.

» FE cannot produce estimates for variables that@nstant within
clusters (level-2 vars; time-invariant in panel 8ifCS data).
+ Difficult to generate precise estimates for the@s of variables
that contain small within-cluster variation.
— This is a problem with the data, though, and rigtger se.

Considerations for the Random I ntercept Model
» More efficient than FE (minimum variance property)

* One can include variables that are constant withisters (unlike
the within estimator).

» Appropriate when inferring tpopulationof clusters?

e |Issue: Correlation between random effect and Déal 1.




V. Cluster Confounding

Controversial Assumption in the RI Model
[Level-1 equation] Yi = :801' + ,81)(” t&;
[Level-2 equation] :801' = Voo ZOj

Controversial Assumption

Cov{y;. %) =0
Issue: We need an accurate estimatg oNote that this is fixed, so thg, 5 B 55
are all estimates of the same paramefer,
Note thatf;, s (and OLS) assumes that the between and withintsfége the same
(i.e., D).

— Remember thay; varies both within and between clusters.
But....the between effect could differ from the viitleffect for a variety of reasons.
“Cluster confounding”; due to omitted variableg)evel-2 (which are related to
X;), B, could be confounded by conflicting between and ivitffects.

Cluster confounding occurs when we've assumed the within and betweectsf
are the same (by estimating a pooled or partiadigted 8), but they're actually
different.

— Think about what it would take to eliminate th@toversial assumption in the model
above? Also, connection to ecological fallacy.




1. Hausman Test

» Tests the equality of coefficients b/w FE and R&del.

— Essentially testing the “controversial assumptiand therefore,
the existence of cluster confounding.

— Rl and FE are consistent (f8y if correctly specified. However, if
we violate the “controversial assumption,” Rl beceme
inconsistent, while FE remains consistent.

— If there is no cluster confounding, FE=RE.
* Why? 2 possibilities?
— R-H&S, p. 123

2. Accounting for Cluster Confounding

We can solve this by estimatibgthbetween and within effects @fin
the random intercept modeling framework (R-H & $3419).

For level-1 variables, generate a within-clustett between-cluster
operationalization.

Recall: W
X =% X

Generating these operationalizations:

[Between] X, =L

[Within] X,-\,-N =% — X,




2. Accounting for Cluster Confounding

« Estimate both the within and between-cluster ¢ffe€x;
* Method 1.

— W, W By
yij —ﬁ0+,8 Xij +:8 Xj +Zj +£ij
 What is the correlation now between the within4gug; and {;?

» Method 2 (identical model, different interpretation):
Yi =5 +:8WXij X+t

¢ Can perform Hausman-like test for equality of bexdw and within
estimatesorepresents thdifferencebetween with the within- and
between-cluster effects.

» Importance: Highlights consequences for the moasdsiming
within- and between-cluster effects are equal.

V. Pand / Time-Series Cross-Sectional Data




Panel / Time-Series Cross-Sectional Data

i i t Y X1 X2 X3 X4
1 1 1 54 2 32 1 44
2 1 2 64 4 25 1 44
3 1 3 87 9 45 1 44
4 2 1 24 4 44 0 36
5 2 2 98 7 32 0 36
6 2 3 65 6 22 0 36

15 5 3 98 1 18

18

| ssuesin TSCS Data

Unobserved heterogeneity

Pooling

Temporal dependence

Efficiency — standard errors

— Panel heteroskedasticity (panels have different eariance)
— Contemporaneous error correlation (errors relatedss

countries for given years)
— Serial correlation




Beck and Katz 1995

* Recommended using OLS with panel-corrected staneiaors
(PCSEs)
— Serial correlation should be eliminated beforéresion.

Adjusts SEs for panel heterosk. and contemporaneous
correlation.

* Like robust standard errors in OLS for cross-ssai data.
var(b)=(X’X) 1(X QX)(X'X) 1
Q is the same as in GLS.
The largefT is, the better the PCSEs are.
In Stata, “xtpcse”

* Atrticle did not place emphasis on Ujdst standard error
correction they also suggest AR-1 correction.

* What kind of an approach is this?

Beck and Katz 1996

* Now widely accepted in political science: Beck &atz
(1996); FE with lagged DV and PCSEs.

» Same issues apply to TSCS/panel data that wethHesl
about
— Modeling approaches along pooling spectrum
— Cluster confounding

» Primary difference is dynamics.




V1. Random Coefficient Model

Two-Level Random Coefficient Model

* Motivation for random coefficient modelCausal

heterogeneity




Two-Level Random Coefficient Model

[Level-1 equation] Yi =B tBy% &
[Level-2 equations] ,801 = Voot le
,811' =Vt sz

* We’'ll start simple; no level-2 covariates.

r ReducedTommy, = (yy+¢)) + (1o + 2)% +5;
Yi = yoo'*'le * V10X +sz X T &
Yi = Voo T Vio¥ +le +sz X T &
var(dy)) =iy,
var({y) =¢,,
Com({y;.{2)) =¥

Testing the Adequacy of the Random Coefficient Model

* |In ML, we can do a likelihood ratio test to tds¢ tstatistical
significance of the random coefficient specificatio
— Compare our full model with random intercept and
random coefficient specification to a reduced model
with only a random intercept specification.

— LR test: generate a chi-square statistic, which is
2*(LL -LL ), which is the same as -2*(kELL ;).

— Hy ¢, = ¢,,= 0 [no causal heterogeneity across
clusters]

— Specify full model (RC) first, then reduced (Rlse
Stata’s “Irtest” command.

— Or do it manually; generate chi-squared stat, then
“chiprob” to get p-value (note: 2 degrees of freedom
this test.).




Random Coefficient M odel
Vi = oot ¢1y) + Mo t{5)% +E;

» Think about what this means:
— The random effect for the intercept representsister’s deviation from
the “mean intercept.” [more specifically.....]
— The random effect for the slope represents aarfgstieviation from the
“mean slope.”
* Mean-centering: The random intercept actually@egents the cluster
average when x=0. To make substantive interpretsid the random
intercept part, we can mean-center the x’s at level

e Then, the intercept represents the average cligstelrof the DV,
since it’s for a typical value of x.

Random Coefficient Model

» Generating empirical Bayes residuals at level Z2Herslope
and intercept.

» Using these to calculate partially-pooled sloped iatercepts.




Random Coefficient Model with Cross-Level I nteractions
[Level-1 equation] Yi =B tBy% T &
[Level-2 equations] Boj = Voot VoW, + {5

By = Vio t VuW; + ¢y,

» Causal heterogeneity, in addition to heterogennithe response.

* Level-2 error components are distributed multiggginormal, with means
of zero and estimable variances and covariance.

Random Coefficient Modd with Cross-Level | nteractions
Reduced form

Yi = (Voo * VoW, + le) +(Jot rWw; + sz )Xij T &
Yi = Voot VoW, + {3 + VioXy VW X + o % HE;
Yi = Voot VoW, +VioXy VW X + % + 4 HE;

T

Composite
error term

Cross-level
interaction

* Mean centering importance for understanding constituent effedien
there are interactions

— No mean centering
— “Grand mean” centering

— Cluster mean centering (like operationalizing withnd between-
cluster versions of a level-1 variable.




Estimation

» Note for linear models, differences in estimatwacedures is
not a huge deal; it's a bigger deal for nonlineadeis.

» Estimation techniques:
- GLS
— Maximum likelihood
— Restricted ML (REML)
« All three are asymptotically equivalent

Maximum Likelihood Estimation

» Conditional distribution of the response (condiabon the
random effects):

g®(Y|X,Z;6) whered~MVN(O, %)

* Goal Obtain the unconditional (marginal) distributiohthe
response for each clusidny integrating out the random
effects:

FOY1X:60) =[O ] 00 X604
* Marginal likelihood: N
L= : fON|X;8
[]ovixe)
« Or

L= [] O] 0" 1. ci00a¢




Maximum Likelihood Estimation

* For linear model: there’s a closed form solutionntegral.
— For nonlinear models, integral is approximatedgisjuadrature

» Use EM algorithm to maximize the likelihood
— Mutual dependence of estimates for fixed effentb\ariance
components
— lterative procedure; alternate between “expecatatnd
“maximization” steps

Differences b/w ML and REML

 Differences are minor, and primarily center orcaédting the
variance components.

* In REML, likelihood function not directly applieid the response,
Y. Instead, the restricted likelihood is the fillidlihood with the
variance components only and the fixed effects swep Fixed
effects (coefficients) estimated in second step.

* REML accounts for the loss of degrees of freedomm th estimation
of parameters; generates unbiased estimates vétlznce
components.

* ML estimates do not account for this loss of digl shey are
consistent. There’'ll be a downward bias/oh small samples
(particularly small number of clusters).

» This is analogous to OLS versus ML estimates wdrerariance in
linear regression.




Summarizing the Degree of Pooling

* A way to summarize the average degree of poolinfpr each
random parameter (e.g., random intercept, randopes) is
suggested by Gelman and Hill:

_, var@®)
var({;)
* We can calculate this for each random parameter.

* What is the numerator and what is the denominator?

— Numerator represents the variance ofptasially-pooled
residuals (at level 2, for each parameter)

— Denominator: Level-2 error variance.

— Measures olR2

VIl. Multilevel Modelsfor Binary Dependent
Variables




Binary Responses. GLM Specification

» Hierarchical generalized linear models (HGLM):
1. Specify the sampling model for the dependentdei

2. Specify link function (first, conditional expettan of
response; then, the link is the inverse of that)

3. Specify structural model; model link as a linkarction of
independent variables.

* For linear models, we don't really need to thinkaiGLM
format:
Y; = bgtb Xit+e,
* But we could: Normal sampling model, identity link

[4=E(Y; | X)=x'P]

GLM Specification

»  Utility of HGLM: For nonlinear models.
» Example for binary DVs
1. Bernoulli sampling model
2. Logitlink:
a. Conditional expectation of response:
ECY; |X) = 44 = PreY,=1 | X) = exp(xB) / [1+ exp(xP)]
b. Link is the inverse of;
n=logl 1 (1 —44)] [log-odds]
3. Structural model: writg; as a linear function of level-1




Estimation

* See handout

» gllamm or xtmelogit (uses quadrature)

Estimating Multilevel Models with Binary Responses
in Stata

» xtlogit andxtprobit : random intercept models only (default is
adaptive quadrature, 12 points)

» xtmelogit: Rl and RC logit model (default is adaptive quadirat 7
points)

» gllamm: add-on package to Stata (created by Rabe-Heskdth an
Skrondal); estimates Rl and RC models for all typeBVs
(continuous, binary, ordinal, count, duration, noat); uses
quadrature and adaptive quadrature.

— Toinstall, type (in Stata)ssc i nstall gllamm

* See handout on gllamm.

» Using good start values and increasing numbeuaticature points.




Generating Quantities of I nterest

* In gllamm, use thedilapred” command (after specifying a
gllamm model)

» To retrieve empirical Bayes residuals:
gll apred eb, u

* For an RI model, this will generate two variablesm1 and
ebs1.
— ebml is the empirical Bayes residuals (like whageewith
“reffects” in the canned xtmixed and xtmelogit).
— ebsl is the s.e. of the EB residuals

* For an RC model, the command will generate foulakées:
ebm1, ebsl, ebm2, and ebs2. “1” is for random iefec2”
is for random slope.

Probabilitiesin Binary Response Models

» Two different brands of predicted probabilities:
— Cluster-specific probabilities
» Takes into account the clustering, hierarchicaicttire in the data.
* Rl and RC models fit cluster specific probabibti®r(Y=1 |{, x)

— Marginal, or “population-averaged,” probabilities
» Marginal with respect to the random effects; phaamilla logit and
probit produces marginal, PA probabilities: Pr(Y=4.|They don’t
depend or, because we’re not modeling it.
» To generate marginal probabilities from an Rl @ Rodel, need
to integrate out, as on p. 254 (eq. 6.7).

» See page 255 in RH&S; difference between clugtecific and
marginal probabilities.




Probabilitiesin Binary Response Models

» Generatingluster-specific probabilitiesafter running a
gllamm model; use thegtlapred” command.

gl l apred cs_prob, nu
» This will generate a predicted prob for observationthe
sample, using the cluster’s particutariSee pp. 269-70.

* Generatingnarginal, or PA, probabilities after running a
gllamm model:

gl | apred marg_prob, mu margi na




