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Abstract 
Researchers analyzing panel, time-series cross-sectional, and multilevel data often choose 
between random effects, fixed effects, or complete pooling modeling approaches. While pros and 
cons exist for each approach, I contend that some core issues continue to be ignored. I propose a 
modeling framework for analyzing clustered data that solves various substantive and statistical 
problems. The approach: (1) solves the substantive interpretation problems associated with 
cluster confounding, which occurs when one assumes that within- and between-cluster effects 
are equal; (2) accounts for cluster-level unobserved heterogeneity; (3) satisfies the controversial 
statistical assumption that level-1 variables be uncorrelated with the random effects term; (4) 
allows for the inclusion of level-2 variables; and (5) allows for statistical tests of cluster 
confounding. I illustrate this approach using three substantive examples: global human rights 
abuse, oil production for OPEC countries, and Senate voting on Supreme Court nominations. 
Analyses highlight how the proposed framework enhances substantive interpretations.  
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 Political scientists analyzing clustered data—namely panel, time-series cross-sectional 

(TSCS), and multilevel (or hierarchical) data—face difficult choices when confronting the model 

specification and estimation stages of their research. Importantly, clustered data structures 

possess multiple levels of analysis where lower-level units of analysis are nested within higher-

level units of analysis. Clustering induces unobserved heterogeneity across clusters, meaning the 

conditional cluster means of the dependent variable vary for unobserved reasons. To examine 

clustered data, political scientists often choose between a “fixed effects” (FE), “random effects” 

(RE),1 and “complete pooling” modeling approach. The first two approaches account for 

unobserved heterogeneity, though in very different ways, while complete pooling ignores 

unobserved heterogeneity altogether. Moreover, each approach produces different, and, in some 

cases, ambiguous substantive interpretations of coefficients.  

While debates continue within political science about which approach is best for certain 

situations (e.g., Beck 2001; Beck and Katz 2001, 2007; Green, Kim, and Yoon 2001; Stimson 

1985; Wilson and Butler 2007), I argue that some core issues concerning clustered data continue 

to be both mischaracterized and ignored. In addition to clarifying some misconceptions about 

extant approaches, I present a unified and simple modeling framework for analyzing clustered 

data, which should be of general interest to analysts of panel, TSCS, and multilevel data. I call 

this a “unified” approach because it solves many of the substantive and statistical problems that 

extant approaches possess. First, the method solves the problem of cluster confounding, which 

occurs when a level-1 variable (a time-varying variable in TSCS and panel data) exhibits distinct 

                                                 
1 I use “random effects” and “random intercept” interchangeably throughout the paper. The term 

“random effects” technically implies both a random intercept model and the more general 

random coefficient model. But most people refer to the former when they use the term.  
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within-cluster and between-cluster effects, yet one does not distinguish these two types of 

variation in the variable. Thus, the within- and between-cluster effects are combined, or 

confounded, together into a single effect (e.g., Skrondal and Rabe-Hesketh 2004; Zorn 2001b). 

The solution, which entails estimating separate within- and between-cluster effects, allows for 

more explicit substantive interpretations of effects. Second, estimation of a random intercept 

model (or more generally, a random coefficient model) allows one to control for unobserved 

heterogeneity at the cluster level. Third, the solution to cluster confounding satisfies the 

controversial statistical assumption associated with the RE approach that level-1 independent 

variables be uncorrelated with the random effects term. Fourth, unlike the FE approach, the 

proposed method allows for the inclusion of level-2 variables (time-constant variables in TSCS 

and panel data), thus not limiting the types of hypotheses one can test. And fifth, the method 

allows for statistical tests of cluster confounding, i.e., whether differences between within- and 

between-cluster effects are statistically significant.  

I empirically illustrate the modeling approach using three substantive examples: (1) 

global human rights abuse (Poe and Tate 1994; Poe, Tate, and Keith 1999); (2) oil production in 

OPEC countries (Blaydes 2004, 2006; Goodrich 2006); and (3) Senate voting on Supreme Court 

nominations (Epstein, Lindstadt, Segal, and Westerland 2006). Reexaminations of these data 

produce refined interpretations of the some of the core substantive conclusions. 

CLUSTERING AND UNOBSERVED HETEROGENEITY 

As is well known, clustering induces unobserved heterogeneity, which means that the 

cluster means of the dependent variable will vary across clusters because of unmeasured cluster-

level factors.  Unobserved heterogeneity is a core concept that should always be addressed in 

clustered data. For some models, one can include observed variables that will explain part of this 
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variation in the dependent variable across clusters, but there will almost always be residual error 

variance at the cluster level, just as there is always residual error variance in a plain vanilla OLS 

model. Figure 1 provides a simple illustration of unobserved heterogeneity in clustered data. 

Across the horizontal axis are ten clusters, e.g., individuals or countries in panel or TSCS data; 

schools, countries, or states in multilevel data. The dots represent values of the dependent 

variable for each unit of analysis within a given cluster. Each cluster contains six observations. 

For panel and TSCS data, the dots could represent values of Y over six time periods. For 

multilevel data, the dots could represent six individuals per school. The dash within each cluster 

represents that cluster’s mean of the dependent variable. When statisticians and political 

methodologists speak of “unobserved heterogeneity” in clustered data, they are simply referring 

to variation in these dashes across clusters.2 That is, there is something about cluster 7 that makes 

it on average higher in values of the dependent variable than clusters 1, 2, and 10; but this 

“something” cannot be completely captured by observed independent variables. Once some 

observed cluster-specific independent variables are included in a model, we are then interested in 

variation in the conditional cluster means of the dependent variable.  

[Figure 1 about here] 

To introduce these issues in equation form, I prefer a generalized multilevel modeling 

setup. For now, I assume a linear modeling framework.  

(1a)  Yij = 0j + X1ij + X2ij + eij   [Level-1 Equation] 

(1b)  0j = 00 + 01Z1j + u0j    [Level-2 Equation] 

                                                 
2 More specifically, I am referring here to unobserved heterogeneity in the response. Random 

coefficient models can account for this type of heterogeneity as well as unobserved causal 

heterogeneity, which means that level-1 effects vary over clusters due to unmeasured factors.  
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Equations 1a and 1b can be rewritten in a reduced-form representation by substituting the level-2 

equation into the level-1 equation: 

(2)  Yij = 00 + X1ij + X2ij + 01Z1j + u0j + eij 

In this setup, i indexes level-1 units and j indexes level-2 units. In TSCS and panel data, i 

represents measurement occasions and j represents individuals or countries. TSCS and panel data 

modelers are used to communicating the number of cross-sectional units (N) and time points (T). 

In the multilevel representation above, cross-sectional units are level-2 units and T represents the 

cluster sizes for each cluster (the number of measurement occasions per cluster). Thus, if N=30 

and T=40, we have 1,200 measurement occasions (level-1 units) nested within 30 individuals or 

countries (level-2 units). Two variables, X1ij and X2ij, are included at level 1. For panel and TSCS 

data, these are time-varying variables. For multilevel data, with individuals nested within higher-

level units, these would be individual-level variables. Z1j is a level-2 variable, which is a time-

constant (or country/individual-specific) variable in panel and TSCS data and a contextual 

variable in multilevel data. eij represents the level-1 error, a random term assumed to be normally 

distributed with mean zero and an estimable variance. 

The inclusion of 0j means that the intercept is allowed to vary somehow across level-2 

units. u0j represents unobserved heterogeneity across clusters, and as I discuss in more detail 

below, there are alternative ways to treat u0j. Referring to back to Figure 1, the inclusion of 0j 

and u0j allows the conditional means of the dependent variable to vary across level-2 units for 

unobserved reasons. Note how the level-2 equation allows for the varying intercept to be 

explained by observed (Z1j) and unobserved heterogeneity (u0j). Failure to account for 

unobserved heterogeneity (i.e., completely pooling the data) forces the conditional cluster means 

of the dependent variable to be equal, which is a restrictive assumption indeed, though one we 
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can test for. If violated, forcing this assumption will lead to biased parameters estimates (e.g., 

Gelman and Hill 2007; Hsiao 2003; Raudenbush and Bryk 2002; Skrondal and Rabe-Hesketh 

2004). For panel and TSCS data, dynamics are also a concern, and other work discusses this 

issue in greater depth (Beck and Katz 1996; Hsiao 2003; Heckman 1981; Wilson and Butler 

2007). Throughout this paper, I adopt a standard practice of using a lagged dependent variable to 

account for dynamics.  

(3)  Yij = 00 +  X1ij + X2ij + Yij(t-1)01Z1j + u0j + eij 

MODELING APPROACHES FOR HANDLING UNOBSERVED HETEROGENEITY 

How to model unobserved heterogeneity (u0j) in clustered data constitutes a core debate 

in the statistical literature generally (e.g., Baltagi 2005; Hsiao 2003; Wooldridge 2002) and in 

political science applications (e.g., Beck 2001; Green et al. 2001; Stimson 1985; Wilson and 

Butler 2007; Zorn 2001a). Three general avenues are available for treating u0j. The first is a 

complete pooling approach, which assumes that u0j=0 and thus ignores unobserved 

heterogeneity. Note that a commonly-used modeling approach for TSCS data—the original Beck 

and Katz (BK) (1995) recommendation of using “panel-corrected standard errors” (PCSEs)—is a 

complete pooling approach that does not account for unobserved heterogeneity. The authors’ 

PCSEs do, of course, make corrections for the standard errors, but the OLS coefficients that the 

authors recommend are completely pooled estimates. The major payoff of this approach is its 

simplicity, and numerous practitioners have implemented this procedure (see Wilson and Butler 

2007 for an extensive review). A disadvantage of complete pooling is that ignoring unobserved 

heterogeneity can induce omitted variable bias (e.g., Hsiao 2003; Skrondal and Rabe-Hesketh 

2004). Moreover, as I will discuss in more detail below, interpretation of results is unclear 

because the coefficients assume that the within- and between-cluster effects are equal. Thus, one 
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cannot be completely confident over which level of analysis (e.g., longitudinal versus cross-

sectional; individual versus aggregate) the relationship actually occurs.  

Second, a fixed effects approach allows each level-2 unit to possess its own intercept, 

meaning u0j is treated as fixed. The FE approach is a “no pooling” approach. Since the cluster 

dummies absorb all of the between-cluster variation in the data, the effects of X1ij and X2ij are 

solely within-cluster effects and the effect of Z1j cannot be estimated. For TSCS data, a now 

standard modeling practice is to use an FE model with panel-corrected standard errors and a 

lagged dependent variable to account for dynamics (Beck and Katz 1996; Beck 2001; Wilson 

and Butler 2007), though there is not an ironclad consensus about this strategy among 

practitioners (see, e.g., Blaydes 2006; Goodrich 2006).  

One of the concerns practitioners raise about the FE model is that it eats up too many 

degrees of freedom, resulting in shaky estimates (e.g., Beck 2001; Beck and Katz 2001). This is 

somewhat of a misconception. Since all between-cluster variation in the data is absorbed by the 

cluster-specific dummies, the effects of independent variables are solely within-cluster effects, 

which has implications for how one interprets coefficients. For TSCS data, such effects are 

interpreted as: for a given country, as X varies across time by one unit, Y increases or decreases 

by  units. The fact that cluster-specific independent variables (like Z1j in equation 1b) cannot be 

included in the FE model is seen as a major disadvantage of the FE approach since it eliminates 

the ability to test between-cluster hypotheses. Another disadvantage is that one cannot retrieve 

“good” estimates of sluggish, or slowly-changing, variables in the FE model (Beck 2001; 

Plumper and Troeger 2007). Though again, this should not be surprising, since the FE model 

produces solely within-cluster effects. For variables in panel or TSCS data that do not vary much 

over time, we should expect coefficients to be inefficient given the lack of within-cluster 
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information in the data. For sluggish variables, the issue is not the FE model, per se, but instead 

with the nature of the data. Importantly, one can test for the adequacy of the FE specification by 

performing a joint F-test of the cluster dummies. 

Third, a random effects, or random intercept, approach treats u0j as distributed normally 

with mean zero and an estimable variance. This approach decomposes the total error into a level-

1 component (eij) and a level-2 component (u0j). The RE model is a “partial pooling” approach, 

with the effects of X1ij and X2ij a weighted average of the within and between-cluster variation in 

the data (e.g., Gelman and Hill 2007; Hsiao 2003; Skrondal and Rabe-Hesketh 2004). The RE 

approach, and the more generalized random coefficient model, is widely used in analyses of 

panel data (with large N relative to T) and multilevel data (e.g., Bowler, Donovan, and 

Hanneman 2003; Martin 2001; Steenbergen and Jones 2002).3  

A major complaint lodged against the RE model relates to the restrictive assumption that 

level-1 independent variables be uncorrelated with the random effects term: Cov(Xij, u0j)=0. 

Since a level-1 variable varies both within and between clusters, many argue that this an 

unrealistic assumption to satisfy, since unobserved heterogeneity will almost always be 

correlated with the independent variables. This controversial assumption often makes the FE 

model, which does not incorporate this assumption, a superior choice over the RE model (e.g., 

Beck 2001; Kristensen and Wawro 2003; Wilson and Butler 2007). Analysts often rely on the 

Hausman (1978) test to assess the adequacy of this controversial assumption. I will have more to 

                                                 
3 GEE models (Zeger and Liang 1986; Zorn 2001a), which share some basic similarities to the 

RE approach, are becoming more commonly used in political science analyses of clustered data. 

Also called population-averaged models, GEE estimates are marginal with respect to unobserved 

heterogeneity, while RE estimates are conditional with respect to unobserved heterogeneity.   
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say about this assumption and the Hausman test later on. Moreover, for TSCS data, some argue 

that RE is inappropriate because it treats unobserved heterogeneity across countries as random, 

yet for a population of countries, an FE approach would be superior (Beck 2001; Kristensen and 

Wawro 2003). This is a major misconception. Unobserved heterogeneity represents unmeasured 

differences between countries in the dependent variable, and so the RE approach simply 

separates random error into a within-cluster (eij) and between-cluster (u0j) component. The latter 

represents random error across, e.g., countries, just as a simple OLS model would contain a 

random error term that captures unobserved differences across countries in a cross-sectional 

analysis. A disadvantage of the RE approach—and one shared with the complete pooling 

approach—relates to the interpretation of coefficients. Though the coefficients from an RE 

model are now partially pooled, as opposed to completely pooled, the estimates still assume that 

the within- and between-cluster effects are equal, thus making substantive interpretations 

imprecise. One major advantage of the RE approach over FE is that one can include level-2 

variables (e.g., time-constant variables in TSCS and panel data), which allows one to test the 

effects of between-cluster variables. 

A UNIFIED MODELING APPROACH FOR CLUSTERED DATA 

In this section, I elaborate on a simple yet powerful methodology capable of solving 

many of the substantive and statistical problems common to extant approaches and, at the same 

time, maintaining many of the positive aspects of these approaches. The approach: (1) solves the 

substantive interpretation problems associated with cluster confounding, which occurs when one 

assumes that the within- and between-cluster effects are equal; (2) accounts for unobserved 

heterogeneity via the use of a random intercept model, which incorporates a random error at the 

cluster level; (3) satisfies the controversial statistical assumption that the level-1 variables be 
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uncorrelated with the random effects term; (4) allows for the inclusion of level-2 variables, 

something the FE approach cannot accommodate; and (5) allows for statistical tests of cluster 

confounding, which bear resemblance to the Hausman test.  

Cluster Confounding. To motivate the issue of cluster confounding, I draw upon work in 

statistics by Skrondal and Rabe-Hesketh (2004, 50-53; see also Rabe-Hesketh and Skrondal 

2005) and in political science by Zorn (2001b). In panel, TSCS, and multilevel data, there are 

multiple sources of variation in the data, which has implications for how we understand the 

effects of independent variables. It is worth remembering that variables may be measured so that 

(1) they vary both within and between clusters (e.g., time-varying variables in panel and TSCS 

data; level-1 variables in multilevel data) or (2) they vary only between clusters and not within 

clusters (e.g., time-constant variables in panel and TSCS data; level-2 variables in multilevel 

data). Relationships between independent variables and the dependent variable will vary over 

different units of analysis depending on which level they are measured at. An important issue 

that has gotten lost in the debate over modeling approaches is the notion that a level-1 variable 

may exhibit quite distinct within- and between-cluster effects, as highlighted by Zorn (2001b) in 

the context of discrete-time duration modeling. For example, in TSCS data, what if X exhibited a 

null within-cluster, or longitudinal, effect but a positive between-cluster effect? We would 

conclude that, for a given country, increases in X over time do not affect Y. But across countries, 

as average levels of X increase, average levels of Y increase as well. Recall that the FE model 

would only recover the within-country effect. Importantly, the complete pooling and RE models 

would assume that the within- and between-country effects are equal. That is, we would have 

one coefficient, and we would assume that, for a given country, a one-unit change in X across 

time has the same impact on Y as a one-unit change in the average of X between countries.  
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The example above is one of cluster confounding, which occurs when a level-1 variable 

exhibits distinct within-cluster and between-cluster effects, yet one only includes the original 

level-1 variable in the model without distinguishing these two types of variation in the variable. 

As a result of not making this distinction, the within- and between-cluster effects are combined, 

or confounded, into a single effect representing an average of the within- and between-cluster 

effects. If the within- and between-cluster effects of a level-1 variable are the same, which is 

something we can test for, then cluster confounding is not a problem. But if they are not equal, 

the uncorrected results cannot distinguish whether the effects are within- or between-cluster 

effects. Cluster confounding has significant implications for how one interprets the effects of 

independent variables in clustered data, and therefore, detecting and correcting for it is crucial 

for understanding the precise nature of relationships and for testing hypotheses. 

Figure 2 illustrates the importance of cluster confounding by presenting different types of 

scenarios of within- versus between-cluster effects. For each plot, three clusters (e.g., countries, 

individuals, states, schools) are presented. The solid lines represent within-cluster effects and the 

dashed lines represent between-cluster effects. In Figure 2A, no cluster confounding exists; the 

within- and between-cluster slopes are equal. In the remaining three plots, significant cluster 

confounding occurs. Figure 2B presents a scenario where there is a positive within-cluster effect, 

but a negative between-cluster effect. For TSCS data, this would mean that, for a given country, 

increases in X produce increases in Y, but between countries, as average levels of X increase, the 

average of Y does not change. Figure 2C illustrates drastic cluster confounding, where the 

within-cluster effect is positive, but the between-cluster effect is negative. And Figure 2D 

represents a scenario where the within-cluster effect is null, while the between-cluster effect is 

negative. For instance, in multilevel data, we might have a null individual effect but a negative 



 11

aggregate effect. One can imagine additional cluster confounding scenarios as well. On the 

whole, Figure 2 highlights the dire consequences of not accounting for cluster confounding in 

empirical analysis. One runs the risk of making incorrect substantive interpretations and 

rendering incorrect verdicts on hypotheses.  

[Figure 2 about here] 

Solving the problem of cluster confounding first involves calculating within- and 

between-cluster transformations of a level-1 variable, Xij (e.g., Skrondal and Rabe-Hesketh 2004; 

Zorn 2001b). One first calculates the cluster-specific mean of Xij, which we will call jX . This is 

the between-cluster operationalization of Xij. Then, the within-cluster operationalization of Xij is 

calculated as: jij
W
ij XXX  . Since we have completely separated the within from the between-

cluster variation in Xij, note that jX  and W
ijX are completely uncorrelated. As I discuss in more 

detail in the substantive applications, W
ijX represents deviations in units of measurement from the 

cluster mean. I have created a Stata program to generate these within- and between-cluster 

transformations. Details are in Online Appendix A.  

Random Intercept Model. The next step involves specifying a random intercept model 

and including the within- and between-cluster transformations of the X’s in the model. 

Importantly, this modeling approach solves the problem of cluster confounding while accounting 

for cluster-level unobserved heterogeneity. I use the reduced-form representation of the model 

from equation 2 to demonstrate the approach:  

(4) ijjjjj
W
ij

W
ijij euXXZXXY  0203102101221100   

1 and 2 now represent within-cluster effects of X1 and X2, respectively. These would be purely 

individual effects in typical multilevel data and purely longitudinal effects for TSCS and panel 
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data. 02 and 03 now represent between-cluster effects of X1 and X2, respectively. These would be 

aggregate effects in multilevel data and cross-sectional effects in panel and TSCS data. In the 

substantive applications, I discuss interpretations of these effects in more detail. Since this is a 

random-intercept model, the total error is partitioned into a within-cluster (eij) and between-

cluster component (u0j). Both are assumed to be normally distributed with means equaling zero 

and estimable variances.  

Advantages. An extremely important feature of this model is that it satisfies the 

controversial assumption, Cov(Xij, u0j)=0. The within-cluster transformations of X1 and X2 are 

now completely uncorrelated with the between-cluster random effect, u0j, thus escaping the bias 

that can occur when violating this assumption. Of course, we still assume that all level-2 

variables are uncorrelated with u0j (e.g., 0),( 01 jj uXCov ), but then again, we make similar 

assumptions in a simple OLS regression that the independent variables be uncorrelated with the 

error term. Another important feature of this model is that, unlike the FE model, one can include 

level-2 variables, like Z1j, in the model. Thus, the major advantage of this modeling approach 

over the FE model is that one can still estimate within-cluster effects of variables, but in addition, 

one can simultaneously estimate between-cluster effects and the effects of additional level-2 

variables. Unlike the FE model, the proposed approach does not limit the types of hypotheses 

one can test.   

 Statistical Tests for Cluster Confounding. Another important feature of this modeling 

approach is that it allows for statistical tests of whether cluster confounding poses a significant 

problem, that is, whether the differences between the within- and between-cluster effects are 

statistically significant. To perform these tests, one estimates the same underlying model as in 

equation 4 but with different operationalizations of the X’s:  
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 (5) ijjjjjijijij euXXZXXY  0203102101221100   

Instead of including the within-cluster operationalizations of the X’s (i.e., W
ijX 1  and W

ijX 2 ) as was 

done in equation 4, one includes the originally-coded X1ij and X2ij.
4 For this specification, 1 and 

2 in equation 5 will be identical to 1 and 2 in equation 4; they still represent within-cluster 

effects of X1 and X2, respectively. However, including the originally-coded X’s instead of the 

within-cluster transformations changes the meaning of 02 and 03. In equation 5, 02 and 03 now 

represent the differences between the within-cluster and between-cluster effects of X1 and X2, 

respectively (see Skrondal and Rabe-Hesketh 2004, 53). These  coefficients, in conjunction with 

their standard errors, allow one to test for the existence of cluster confounding, that is, whether 

the differences between the within- and between-cluster effects are statistically significant.  

 Note the resemblance of this testing procedure to the Hausman (1978) test, which tests 

for differences between coefficients from an FE model an RE model. The Hausman test 

essentially assesses the adequacy of the RE model’s assumption that the within- and between-

cluster effects are equal. If they are equal, then cluster confounding is not a problem, and 

therefore the RE coefficients will not differ systematically from the FE coefficients. Many 

practitioners also conclude that significant differences between FE and RE estimates means that 

the RE estimates are inconsistent due to the violation of the controversial assumption that 

Cov(Xij, u0j)=0. But the estimation of distinct within- and between-cluster effects for X removes 

this bias in the RE model (see, e.g., Skrondal and Rabe-Hesketh 2004, 52-53, 269).  

A Note on Dynamics. To account for dynamics in TSCS and panel data, one should add 

                                                 
4 Note that this specification is the approach suggested by Bafumi and Gelman (2006). However, 

the authors are not explicit about the interpretations of the coefficients. 
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the within-cluster operationalization of the lagged dependent variable, W
tijY )1(  . This represents 

how, for a given country, past values of the dependent variable influence current values. It would 

not be substantively meaningful, however, to include the lagged cluster mean of Yij (i.e., )1( tjY ).  

Extensions 

 A logical extension to the random intercept specification discussed above is to specify a 

random coefficient model (RCM) (see Beck and Katz 2007; Raudenbush and Bryk 2002; 

Skrondal and Rabe-Hesketh 2004; Steenbergen and Jones 2002; Western 1998). In addition to 

allowing the intercept to vary across clusters, the RCM allows level-1 coefficients to vary across 

clusters. Substantively, this accounts for cluster-level heterogeneity in the effects of level-1 

variables (i.e., causal heterogeneity). If one is interested in how contextual variables shape the 

magnitude of level-1 effects, one can include cross-level interactions. Below is an illustration:  

(6a)  ij
W
ijj

W
ijjjij eXXY  22110     [Level-1 equation] 

(6b) jjjjj uXXZ 0203102101000     [Level-2 equations] 

(6c) jjj uZ 1111101    

(6d) jjj uZ 2121202    

 
The within-cluster effects of X1 and X2 (i.e., 1j and 2j) are allowed to vary across clusters. Z1j, a 

level-2 variable, is specified to moderate the impact of the within-cluster effects of X1 and X2. 

Unobserved heterogeneity in the effects of 1 and 2 is represented by u1j and u2j, respectively.  

 Another specification that may be of substantive importance is to model how between-

cluster variation in X moderates the within-cluster impact of X. In the multilevel context, 

Gelman, Shor, Bafumi, and Park (2006) have shown how the individual-level effect of income 

on vote choice depends on aggregate levels of income across states. That is, within poorer states, 

poor individuals are significantly more likely to vote Democratic than rich individuals. But 

within richer states, income essentially has a null individual-level effect. In short, aggregate 
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income across states moderates the individual-level effect of income. A generalized version of 

such a model can be specified as: 

(7a)  ij
W
ijj

W
ijjjij eXXY  22110     [Level-1 equation] 

(7b) jjjjj uXXZ 0203102101000     [Level-2 equations] 

(7c) jjj uX 1111101    

(7d) jjj uX 2221202    

 
In this model, the between-cluster X’s moderate their respective within-cluster effects of the X’s. 

The RCM offers additional opportunities for testing substantively important phenomena.  

Estimation  

 The linear random intercept model can be estimated via feasible generalized least squares 

(FGLS), maximum likelihood (ML), or Bayesian simulation via Markov Chain Monte Carlo 

(MCMC); technical details of these procedures are discussed extensively elsewhere (Beck and 

Katz 2007; Gelman and Hill 2007; Hsiao 2003; Skrondal and Rabe-Hesketh 2004; Western 

1998). Each procedure should yield similar statistical inferences (assuming one employs diffuse 

priors in the MCMC approach). Beck and Katz (2007) show that FGLS has poor finite-sample 

properties for the RCM, so practitioners should proceed with caution when using this approach.  

 For nonlinear models (with binary, ordinal, count and other non-continuous outcomes), 

the two “standards” for estimation are ML and MCMC (e.g., Rodriguez and Goldman 2001). 

These methods have been shown to be significant improvements over penalized quasi-likelihood 

(PQL) and marginal quasi-likelihood (MQL) procedures implemented in the software HLM (see 

Rodriguez and Goldman 1995, 2001). For ML, maximizing the likelihood entails acquiring the 

unconditional distribution of the outcome by integrating out the random effect(s). This can be 

done using numerical integration via quadrature-based methods (Skrondal and Rabe-Hesketh 

2004) or simulated maximum likelihood (Train 2003). Skrondal and Rabe-Hesketh have found 
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that adaptive quadrature produces more accurate results compared to standard quadrature. For 

RCMs, as the number of random effects increases, ML becomes computationally inefficient, and 

analysts should consider using MCMC instead. Estimation via ML is available in both Stata 

(using the “xt” commands) and R (using the “lme” or “nlme” packages). Additional details about 

model estimation and software are included in Online Appendix A.  

Standard Errors.  In TSCS analysis, standard errors have received a great deal of 

attention. Beck and Katz’s (1995) panel-corrected standard errors (PCSEs) adjust OLS standard 

errors for panel heteroskedasticity (due to clustering) and contemporaneous error correlation. 

Since the proposed framework outlined above accounts for cluster-level heterogeneity and 

separates within- from between-cluster variation in level-1 variables, threats to the accuracy of 

standard errors should be minimal. One can always test for various forms of heteroskedasticity 

that may exist even after modeling heterogeneity, and robust standard errors could be used to 

correct for any heteroskedasticity that may exist. Online Appendix B provides a further 

discussion of this issue and an empirical comparison highlighting how standard errors from the 

proposed framework produce highly similar inferences to those from alternative models that 

explicitly correct for standard errors. 

EMPIRICAL ANALYSIS: THREE SUBSTANTIVE APPLICATIONS 

To illustrate the proposed methodology, I present three substantive applications. I use two 

TSCS applications, both of which involve estimation of linear models. The first is a 

reexamination of global human rights abuse (Poe and Tate 1994; Poe, Tate, and Keith 1999). The 

data possess a large N relative to T, therefore bearing some resemblance to panel data.5 The 

                                                 
5 Beck (2001) argues that a key distinction between panel and TSCS data is that the units in 

panel data (individuals) are sampled from a larger population, while the units in TSCS data 
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second application is a reexamination of the “rewarding impatience” hypothesis regarding oil 

production in OPEC countries (Blaydes 2004, 2006; Goodrich 2006). These data contain a small 

N relative to T. The third application is a multilevel analysis with a binary dependent variable, 

where I reexamine Epstein, Lindstadt, Segal, and Westerland’s (2006) analysis of Senate voting 

on Supreme Court nominations. For all three applications, I discuss and present some graphical 

post-estimation strategies which greatly illuminate substantive interpretations of the results. 

Global Human Rights Abuse, 1977-1993 

 Poe and Tate (1994) provide an important and influential examination of global human 

rights abuse. Their study is rich with normative, theoretical, and empirical implications. In that 

analysis, the authors examine 153 countries from 1981 to 1987. In Poe et al. (1999), the authors 

update and backdate their data over time, add some countries to the dataset, and present new 

models that refine some of the substantive conclusions from the earlier work. These data include 

164 countries covering the years 1977 to 1993. For the dependent variable, the authors rely on 

“political terror scales,” where a country is categorized on a scale of 1 to 5 based on the 

“occurrence of political imprisonment, execution, disappearances, and torture” (Poe et al. 1999, 

297). Countries are categorized by coding the yearly reports from both Amnesty International 

(AI) and the State Department (SD). Thus, there are two dependent variables, both ranging from 

1 to 5, where higher values represent higher levels of personal integrity rights abuse. Results 

from models using both the AI and SD dependent variables yield similar results. In my 

reexamination, I analyze the AI dependent variable only.  

                                                                                                                                                             
represent a population of countries. Another major difference is that in TSCS data, N and T are 

usually not drastically different, while in panel data, N is very large relative to T. It is for this 

latter reason that I say this first example bears some resemblance to panel data. 
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 The authors include ten time-varying variables (i.e., level-1 variables). These include a 

lagged dependent variable (to account for dynamics), democracy (7-point Freedom House 

political rights scale; higher values indicate higher levels off democracy),6 population size 

(logged population), population change (percent change from the previous year), economic 

standing (per capita GNP), economic growth (percent change in GNP from the previous year), 

leftist government (dummy variable), military control (dummy variable), international war 

(dummy variable), and civil war (dummy variable). The authors include one time-constant 

variable (i.e., level-2 variable): British cultural influence (dummy variable). For more details on 

measurement, see Poe et al. (1999, 296). Using a completely pooled modeling approach (OLS 

with PCSEs), Poe et al. (1999) find that democracy, economic standing, and British cultural 

significantly decrease levels of rights abuse, while population size, military control, international 

war, and civil war significantly increase rights abuse. 

 I reexamine these results using the modeling approach advocated above. The results are 

presented in Table 1. The total number of observations is 2,471; N=164, and T≈15.7 The left side 

of Table 1 reports a replication of Poe et al.’s results. The right side of the table reports results 

from a linear random intercept model, estimated via ML, which includes within-country effects, 

between-country effects, and the absolute value of the difference between the within- and 

between-country effects (which tests for cluster confounding). Regarding model fit, a likelihood 

ratio test strongly supports the specification of the random intercept model over a completely 

pooled approach; significant unobserved heterogeneity (u0j) exists at the country level. The 

                                                 
6 The authors also used the Polity III democracy scale, and results were very similar to those 

using the Freedom House measure.  

7 The data are unbalanced, so T varies across countries.  
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estimate of  suggests that 46% of the error variance is accounted for by the country-level error.  

[Table 1 about here] 

Moving to the results, note first that the within-country lag of the dependent variable 

exhibits a statistically significant effect, meaning that, for a given country, as past values of 

rights abuse increase, current values increase as well. Poe et al. find that democracy significantly 

decreases rights abuse. When decomposing variation in democracy, results reveal that 

democracy exhibits about equal within-country (-0.10) and between-country (-0.11) effects on 

rights abuse. And the test of cluster confounding suggests that the difference between these two 

effects is statistically insignificant. Thus, the effect of democracy can be viewed as a pooled 

estimate, with the within- and between-country effects being equal, as assumed by Poe et al. 

Similar results exist for population size. The within- and between-country effects are roughly 

equal, and the difference between them is statistically insignificant. For a given country, as 

population size increases over time, rights abuse significantly increases. And, countries with 

greater populations on average have higher average levels of rights abuse than countries with 

lower average populations. Poe et al.’s pooled analysis shows that population change has an 

insignificant effect on rights abuse levels. However, results from the random intercept model 

reveal that significant cluster confounding occurs for this variable. While population change does 

not exhibit a significant within-country effect, it does have a statistically significant between-

country effect. This means that countries that have undergone greater average levels of 

population change have significantly greater levels of rights abuse. Economic standing also 

exhibits significant cluster confounding. Poe et al. report a positive and significant pooled effect 

of this variable, but my results reveal that per capita GNP exhibits a statistically insignificant 

within-country effect and a statistically significant between-country effect. Thus, one cannot 
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conclude that as a particular country’s per capita GNP increases across time, rights abuse 

significantly decreases. What we can conclude is that countries with generally higher levels of 

per capita GNP have generally lower levels of rights abuse. Percent economic change exhibits 

neither a significant within- nor between-country effect on rights abuse.  

Poe et al. report that leftist governments have significantly lower levels of rights abuse 

compared to non-leftist government. Does this effect occur for a given country across time (as a 

particular country moves in and out of being a leftist government) or between countries for ones 

that have been leftist more frequently? The results from the random intercept model support the 

latter. Since leftist government is a dummy variable, the between-country operationalization is 

the proportion of the time countries have leftist governments over this time span. Thus, as this 

proportion increases, rights abuse significantly decreases. The within-country effect is 

statistically insignificant. Results reveal marginally significant levels of cluster confounding 

(p=0.10), but given the within effect is insignificant and the between effect is significant, 

estimating both effects for this variable makes substantive interpretation much more precise. The 

results for military control resemble those for leftist government. Poe et al. report that military 

control significantly increases rights abuse. Results from the random intercept model reveal that 

this pooled effect shows significant cluster confounding. For a given country, a change in the 

state of military control across time exhibits a null impact on rights abuse. However, as the 

proportion of years in which a country is under military control increases across countries, rights 

abuse significantly increases.  

The effects of the two war variables show significant cluster confounding. International 

war exhibits a statistically insignificant within-country effect, meaning that, for a given country, 

being at war at a given time point does not significantly increase rights abuse compared to not 
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being at war during another time point. However, countries that have been at war more 

frequently have significantly higher rights abuse levels compared to countries that have been at 

war infrequently. Civil war exhibits statistically significant within- and between-country effects, 

though the between-country effect is significantly greater. Finally, countries with British cultural 

influence (a between-country variable) experience significantly lower rights abuse levels than 

countries without such influence.  

On the whole, the results clarify and refine some of the core conclusions made by Poe et 

al. It is worth noting that the between-country effects are consistently stronger than the within-

country effects, which is sensible given that there is more between-country information in the 

data (i.e., 164 countries) than within-country information (about 15 years). To illuminate 

interpretations of these effects, Figure 3 presents graphical depictions of within-country (left 

column of Figure 3) and between-country effects (right column) for four variables of interest. 

The graphs depict predicted values ( Ŷ ) of the dependent variable while allowing the variable of 

interest to vary and holding the remaining variables constant at their mean values.8  

For the between-country effects, the X-axis simply represents variation in the country 

specific means of the particular variable ( jX ). For the within-country operationalizations, 

where jij
W
ij XXX  , units of measurement are now deviations from the cluster mean. “0” 

represents the country mean of the variable for each country. “-1” would represent one unit 

below the country mean, and “2” would represent 2 units above the country mean. This has 

implications for how one plots the within-country effects of a variable. In essence, each country 

will occupy a different range of the within-country measurement space depending on a given 

country’s mean for that variable. To illustrate this issue, consider the democracy variable, which 

                                                 
8 The cluster-level random effects term, u0j, is set to 0, its expected value. 
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ranges from 1 to 7. If a particular country’s mean of democracy over the time span is 4.6, then 

that country’s within-country operationalization of democracy will range from -3.6 (i.e., 1 – 4.6) 

to 2.4 (i.e., 7 – 4.6). The within-country slopes for different between-country values will be 

parallel (as is seen in Figure 3), but changing values of the between-country value will shift the 

intercept up or down (also illustrated in Figure 3). In Figure 3, I plot within-country effects when 

the between-country variable is set at low, medium, and high values.9  

[Figure 3 about here] 

Plots A and B in Figure 3 show how the within- and between-country effects of 

democracy are roughly equal. Both exert rather strong effects, and they highlight how: (1) for a 

given country, increasing levels of democracy across time significantly reduce rights abuse, and 

(2) countries that are generally more democratic have significantly lower levels of rights abuse 

compared to countries that are generally undemocratic. Plots C and D illuminate the null within-

country effect and the quite potent between-country effect of economic standing. This distinction 

has important substantive implications for how we understand the causes of rights abuse. 

Readers of Poe et al.’s findings may jump to the conclusion that as a given state experiences 

fluctuations in its economic standing across time, rights abuse will fluctuate as well. But, based 

on these results, this is an incorrect inference to make. Increases in economic standing for a 

                                                 
9 To determine what was deemed low, medium, and high values, I had to make judgment calls 

based on the distributions for each between-cluster variable. Democracy: low=2, medium=4, 

high=6; economic standing: low=10th percentile, medium=mean, high=90th percentile; military 

control: low=20th percentile, medium=median, high=80th percentile; international war: low=25th 

percentile, high=75th percentile. The country means of international war have a lopsided 

distribution, so high and low values were deemed the most appropriate to plot.  
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given country fail to dampen abuse. Instead, economic standing exhibits only an aggregate, 

cross-sectional effect, such that countries with generally higher per capita GNP have 

significantly lower rights abuse levels compared to countries with generally lower per capita 

GNP. The remaining plots illustrate analogous effects, suggesting that military control and 

international war exhibit significant between-country effects and insignificant within-country 

effects. Some might claim that if only a given country would avoid military control, rights abuse 

would decrease. And, when a given country is at war with another country, rights abuse is higher 

compared to when that country is not at war. Both are incorrect inferences based on the results. 

We can only conclude aggregate, between-country effects for these variables. That is, countries 

that are under military control and in international wars a greater proportion of the time have 

significantly higher levels of rights abuse. In sum, making these distinctions between within- and 

between-country effects has important theoretical and empirical implications for our 

understanding of global rights abuse. 

Oil Production in OPEC Countries, 1960-1995 

 Blaydes (2004) presents empirical evidence in support of her “rewarding impatience” 

hypothesis, which, derived from a formal bargaining model, posits that impatient countries with 

shorter time horizons attain significantly greater oil production outputs than patient countries 

with longer time horizons. Analyzing OPEC countries’ oil production levels from 1960-1995 and 

employing a pooled modeling approach (OLS with PCSEs), Blaydes finds that increases in the 

amount of per capita oil reserves (the key variable of interest) are associated with significantly 

lower levels of oil production. She also finds a quadratic effect for per capita reserves, 

suggesting there is a threshold whereby this “rewarding impatience” effect kicks in. In a 

response to Blaydes, Goodrich (2006) takes issue with Blaydes’s pooled modeling approach and 
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suggests that a fixed-effects approach is superior. Goodrich finds that the within-country effect 

of the key variable, per capita reserves, is statistically insignificant. But in a separate between-

country analysis, Goodrich finds that per capita reserves does indeed exhibit a significant effect. 

Blaydes (2006) responds to Goodrich with some of the usual criticisms of the FE approach—it is 

inefficient and that per capita reserves is a “sluggish” variable so the fixed-effect estimate of that 

variable is inaccurate and inefficient. Recall that the problem related to sluggish variables is not 

with the FE model, per se, but with the data. If a variable does not greatly vary, one will never 

retrieve a “good” estimate of that variable unless one collects different and better data. Blaydes 

estimates a random intercept model, as well as running Plumper and Troeger’s fixed-effects 

vector decomposition (fevd) model for sluggish variables. She contends that the results support 

her original arguments pertaining to the “rewarding impatience” hypothesis. 

 Table 2 presents a reexamination of these results. The data consist of 11 OPEC countries 

over 35 years. The dependent variable is the natural log of annual crude oil production. The 

independent variables are: natural log of proven oil reserves, natural log of per capita oil 

reserves (and a squared term of this variable to test the quadratic effect), a lagged dependent 

variable to account for dynamics, and a conflict dummy variable to control for events such as the 

Iranian revolution, the Iran-Iraq War, the Persian Gulf War, and sanctions on Iraq. All variables 

are time-varying covariates. The first two models present replications of Blaydes’s (2006) Model 

3. The first is an OLS model with PCSEs, and the second is a random intercept model.10 The 

third model is a random intercept model (estimated via ML) implementing the procedures I have 

advocated in this paper. Both Blaydes and Goodrich introduce alternative specifications with 

                                                 
10 I could not produce an exact replication of Blaydes’s (2006) Model 3 for both the OLS and 

random intercept models. The results are similar and produce the same substantive implications. 
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some additional independent variables, but results from these models produce substantively 

similar results for the key variables as Model 3.  

[Table 2 about here] 

In terms of model fit, a likelihood ratio test supports the specification of the random 

intercept model over a completely pooled approach. There is significant unobserved 

heterogeneity (u0j) at the country level. Also, the estimate of  indicates that 17% of the total 

error variance is accounted for by the country-level error. Results reveal significant cluster 

confounding for all variables, suggesting severe discrepancies between the within- and between-

country effects of variables. Regarding the key variable of interest, ln(per capita reserves), recall 

that Blaydes found a negative and significant effect, as well as a negative significant effect for 

the squared term. This suggests an upside-down U-shaped effect, where there is some threshold 

at which oil production peaks as a function of per capita reserves. After that threshold, increases 

in ln(per capita reserves) produce a decrease in oil production. Of course, Blaydes’s models 

assume that the within- and between-country effects of these variables are equal. The random 

intercept model shows that the within-country effect of both per capita reserves and its squared 

term are statistically insignificant. In fact, the results suggest a linear, positive within-country 

effect (as will be seen more clearly in Figure 4), which is contrary to what Blaydes predicted. 

Thus, for a given OPEC country, increases in ln(per capita reserves) over time produce a positive 

but statistically insignificant effect on oil production. Turning to the between-country effect of 

per capita reserves, the results report negative and statistically significant coefficients for both 

ln(per capita reserves) and its squared term. This means that countries with generally higher 

levels of per capita reserves have lower oil production than countries with generally lower levels 

of per capita reserves.  
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Figure 4 illustrates these findings. Using the same procedures as discussed for Figure 3 

(in the human rights abuse example), Figure 4 presents both the within- and between-country 

effect of ln(per capital reserves) on ln(crude oil production). Note the very small positive within-

country effect of per capita reserves on oil production. The quadratic between-country effect of 

per capita reserves is displayed in plot B. For very low levels of ln(per capita reserves), there is a 

slightly positive effect. But after the threshold, as average reserves increase between countries, 

average oil production decreases. On the whole, the “rewarding impatience” hypothesis occurs at 

the aggregate, between-country level of analysis, such that countries with generally higher levels 

of per capita reserves attain greater oil production than countries with generally lower levels of 

per capita reserves. Importantly, there is no support for the longitudinal form of the hypothesis. 

Regarding some of the other effects, we see that both ln(proven reserves) and conflict exhibit 

much more potent between-country than within-country effects. This is somewhat surprising 

since we have much more longitudinal information in the data (T=35) compared to cross-

sectional variation (N=11). However, if there is little variation across time, estimates will not be 

as potent. And the data contain significant differences in the averages of these variables across 

countries, which contributes to the larger between-country effects.  

[Figure 4 about here] 

Senate Voting on Supreme Court Nominations, 1937-2005 

 The final substantive application involves a multilevel data analysis of Senate voting on 

Supreme Court nominations, where the dependent variable is binary (1=yea vote, 0=nay vote). 

Epstein et al. (2006) present an update of the Cameron, Cover, and Segal (CCS) (1990) model of 

Senate voting on nominees, which posits the influence of the following variables on a Senator’s 

vote: a nominee’s lack of qualifications (measured using content-analysis of newspaper editorials 
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during the nomination process; ranges from 0 to 1, where higher values represent a less qualified 

nominee), whether the president is in a strong political position (president’s party controls the 

Senate and president is not in fourth year of office), whether a senator is of the same party as the 

president (1=same party, 0=otherwise), and the ideological distance between the nominee and a 

senator. To measure ideological distance, Epstein et al. (2006, 299) employ a “bridging” 

procedure that uses the president’s Poole-Rosenthal Common Space score in conjunction with 

the nominee’s Segal-Cover (1989) ideological score to place senators and nominees in the same 

ideological space.11 Epstein et al. take on some additional issues that I do not address here. On 

the whole, the authors find continued empirical support for the CCS model.  

 Epstein et al. include Senate votes on 40 nominations. There are 3,709 total votes. 

Treating this as a two-level hierarchical structure, the data consist of 3,709 votes nested within 

40 nominations. Ideological distance and same party as the president are level-1 variables 

(varying across both Senate votes and nominations). Lack of qualifications and strong president 

are level-2 variables (varying only between nominations). Epstein et al. use a complete pooling 

approach (probit), which means that one cannot conclude with confidence whether the level-1 

variables (ideological distance and same party) are within- or between-nomination effects. The 

model in Table 3 examines this issue. The left side of Table 3 presents a replication of Epstein et 

al.’s pooled probit model. The right side of the table includes a random intercept probit, which 

estimates within- and between-nomination effects of the level-1 variables as well as effects of the 

level-2 variables. It also presents tests of cluster confounding for the level-1 variables. In terms 

of model fit, a likelihood ratio test supports the specification of the random intercept model over 

                                                 
11 The bridge is nominees chosen by a president who controls the Senate. See Epstein et al. 

(2006, 299) for more details on the measurement strategy.  
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a completely pooled approach. There is significant unobserved heterogeneity at the nomination 

level. The estimate of  indicates that 67% of the total error variance is accounted for by the 

nomination-level error.  

[Table 3 about here] 

 Results from the random intercept model show that ideological distance exhibits a 

negative and statistically significant within-nomination effect on the probability of a yea vote 

and a positive but statistically insignificant between-nomination effect. Thus, Epstein et al.’s 

negative and significant pooled effect is driven by the strong within-nomination effect. While 

there is no statistically significant cluster confounding for ideological distance, the fact that the 

within and between effects are so drastically different strongly supports the need to distinguish 

the two types of effects. Thus, we can conclude that for a given nomination, as ideological 

distance between a senator and a nominee increases, the probability of a yea vote significantly 

decreases. Importantly, there is no contextual effect of ideological distance. That is, nominations 

for which there is a high average ideological distance do not have significantly different 

propensities of yea voting compared to nominations for which there is a low average ideological 

distance. For the effects of party, Epstein et al. find that senators of the same party as the 

president are significantly more likely to vote in favor of the nominee compared to senators not 

of the same party as the president. Results from the random intercept model show that the 

within-nomination effect of party is positive and statistically significant, while the between 

nomination effect is positive and marginally significant. Moreover, there is only marginal 

evidence of cluster confounding. For a given nomination, senators of the president’s party are 

significantly more likely to vote yea than senators not of president’s party. For the between effect 

of party, nominations in which the president has a high proportion of co-partisans in the Senate 



 29

exhibit higher average probabilities of a yea vote compared to nominations where the President 

has a low proportion of co-partisans. For the remaining variables, we see that lack of 

qualifications has a negative and statistically significant effect, meaning that the more a nominee 

lacks qualifications, the less likely that nominee will receive a yea vote. While Epstein et al. 

found that the effect of strong president is positive and statistically significant, results from the 

random intercept model show that the effect of this variable is statistically insignificant.  

 Figure 5 presents graphical interpretations of the within- and between-cluster effects of 

ideological distance and same party as president. Akin to procedures used for producing Figures 

3 and 4, the graphs plot the predicted probability of a yea vote while allowing the variable of 

interest to vary and holding remaining variables constant at their mean values.12 For the within-

nomination effects, I plot predictions when the between variable is set at the 10th percentile, 

median, and 90th percentile. Since this is a probit, note how the within-cluster effects are not 

parallel, since effect sizes will depend on the value of the between-nomination effect. Plot A 

shows the potent within-nomination effect of ideological distance. For values of distance that are 

nearly one unit away from the cluster mean, the probability of a yea vote approaches 0.4 for 

nominations where average distance is low. The null, and even slightly positive, between-

nomination effect of ideological distance is displayed in plot B. This indicates that nominations 

                                                 
12 The predicted probabilities are marginal with respect to the level-2 random effect. That is, u0j 

is averaged over, as opposed to held constant at a particular value (i.e., conditional with respect 

to u0j). Thus, these are akin to average partial effect (see Wooldridge 2002; Skrondal and Rabe-

Hesketh 2004). In nonlinear models, whether predicted probabilities are marginal or conditional 

with respect to u0j is an important distinction. In linear models, calculating predicted values of Y 

using each approach produces the same result. 
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with a high average distance evince roughly the same average probability of a yea vote compared 

to nominations with a low average distance. Plot C shows that for a given nomination with a low 

proportion of senators who are the president’s co-partisans (the long-dashed line), the president’s 

co-partisans are more likely to vote for the president’s nominee than those not of the same party 

as the president. Note how the strength of this within-cluster effect dissipates slightly as the 

proportion of the Senate that is of the same party as the president increases. But then again, the 

overall propensity of a yea vote increases as well, which is also seen in plot D. For nominations 

in which only about 30% of the senate is of the same party as the president, the average 

probability of a yea vote is about 0.8, which is still quite high. But as this proportion increases to 

over 70%, the average probability of a yea vote increases to nearly 1.0.  

[Figure 5 about here] 

DISCUSSION AND CONCLUSION 

 As the substantive applications discussed above make clear, the modeling framework 

discussed in this paper has the potential to enrich both statistical analysis and substantive 

interpretations of effects in examinations of panel, TSCS, and multilevel data. Practitioners can 

be more explicit in communicating the substantive effects of certain variables by separating out 

the within- and between-cluster components of those effects. And the framework allows for 

statistical tests of whether these effects are statistically different. Given the substantive and 

statistical advantages of such a modeling strategy, analysts should be encouraged to implement 

many of these procedures.  

 Of course, this paper does not provide a panacea. There continue to be issues that need 

addressing in the analysis of clustered data. A primary issue in panel and TSCS data is dynamics. 

Since dynamics were not a focus of this paper, I adhered to a common and sensible practice to 
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account for dynamics in panel and TSCS data: the inclusion of a lagged dependent variable (e.g., 

Beck and Katz 1996). As other work discusses, this may not always be the most optimal strategy, 

and analysts and methodologists should pay closer attention to issues of dynamics (e.g., Hsiao 

2003; Wilson and Butler 2007). Moreover, analysts should not necessarily treat dynamics as a 

nuisance simply to be corrected. In panel and TSCS, dynamics are often of great substantive 

interest (e.g., Bartels, Box-Steffensmeier, Smidt, and Smith 2008; Green and Yoon 2002; 

Heckman 1981; Green, Palmquist, and Schickler 2002; Wawro 2002).  

 As I discussed in the “extensions” section in this paper, analysts should also pay attention 

to how a random coefficient model can produce substantively innovative tests of hypotheses. 

Inclusion of cross-level interactions can assess how contextual variables moderate lower-level 

effects. Also, akin to Gelman et al.’s (2006) multilevel example of income and vote choice, the 

RCM fosters innovative tests of how aggregate variation in X shapes the individual effect of that 

X. In the study of human rights abuse, for example, does variation in average GNP across 

countries moderate the longitudinal impact of GNP on rights abuse? In other words, will the 

within-country slopes in Figure 3C vary as a function of a country’s average economic standing? 

Also, in the study Supreme Court nominations, one can envision how an RCM would help shed 

light on Epstein et al.’s contention that ideological distance has significantly increased over time, 

particularly since the nomination of Robert Bork. Specifying a random coefficient for the within-

nomination operationalization of distance would allow the effect of this variable to vary across 

nominations and to retrieve comparable estimates of the effect of ideological distance across 

nominations. As seen by these and other examples, the use of this general multilevel modeling 

framework opens up new avenues for enhancing empirical analysis of panel, TSCS, and 

multilevel data.  
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Figure 1: Illustration of Unobserved Heterogeneity Across Clusters 
    
     
 
 
 
 
 
 
 
 
 
 
 
 
  
 
   

Note: Dots represent responses within a given cluster. Dashes represent the means of Y for each 
cluster. 
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Figure 2: Illustration of Cluster Confounding 
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Table 1: Models of Global Human Rights Abuse – Amnesty International Models, 1977-1993 
 

    Linear Random Intercept Model (Maximum Likelihood) 

  
Poe et al. (1999) OLS 

Results 
Within-Country 

Effects 
Between-Country 

Effects 
Abs(Within - 

Between) 
  Coef. (PCSE) p Coef. (SE) p Coef. (SE) p Coef. (SE) p 
Rights Abuset-1 0.65 (0.02) 0.00 0.38 (0.02) 0.00 - - - - - - 
Democracy (Freedom    
   House) -0.06 (0.01) 0.00 -0.10 (0.01) 0.00 -0.11 (0.03) 0.00 0.00 (0.04) 0.99 
Population Size 0.07 (0.01) 0.00 0.22 (0.09) 0.02 0.18 (0.02) 0.00 0.04 (0.10) 0.66 
Population Change 0.00 (0.00) 0.23 0.00 (0.00) 0.70 0.07 (0.03) 0.03 0.07 (0.03) 0.03 
Economic Standing -0.02 (0.00) 0.00 -0.01 (0.00) 0.28 -0.05 (0.01) 0.00 0.04 (0.01) 0.00 
% Economic Change 0.00 (0.00) 0.35 0.00 (0.00) 0.22 0.00 (0.01) 0.79 0.00 (0.01) 0.89 
Leftist Government -0.17 (0.04) 0.00 -0.04 (0.08) 0.59 -0.32 (0.15) 0.04 0.28 (0.17) 0.10 
Military Control 0.09 (0.03) 0.01 0.00 (0.05) 0.97 0.31 (0.12) 0.01 0.31 (0.13) 0.02 
British Cultural Influence -0.08 (0.03) 0.00 - - - -0.23 (0.09) 0.01 - - - 
International War 0.14 (0.04) 0.00 0.05 (0.06) 0.42 0.63 (0.21) 0.00 0.59 (0.22) 0.01 
Civil War 0.50 (0.05) 0.00 0.46 (0.06) 0.00 1.53 (0.19) 0.00 1.06 (0.20) 0.00 
Constant 0.07 (0.10) 0.50 -0.13 (0.42) 0.75             
Observations N=164, T(avg.)=15.1 N=164, T(avg.)=15.1 

 Tot. Obs.=2,471 Tot. Obs.=2,471 

Model 2 8911.44, p<.001 832.83, p<.001 

Var(Level-1 Error) - 0.29 

Var(Level-2 Error) - 0.25 
  (Level-2 Error / Total 
Error) - 0.46 

LR Test (H0: Level-2 Error=0) - 2=1029.94, p=<.001 
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Figure 3: Within-Country and Between-Country Effects of Selected Variables on  
Personal Integrity Abuse 
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Note: For within-country effects (A, C, E, and G):                 High value of between-country variable                         
              Medium value                   Low value; see text for further details. 
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Table 2: Models of Oil Production for OPEC Countries, 1960-1995 
 

     
Linear Random Intercept Model  

(Maximum Likelihood) 

  
Blaydes Model 
3 with PCSEs 

Blaydes Model 
3 with Random 
Effects (FGLS) 

Within-
Country 
Effects 

Between-
Country 
Effects 

Abs(Within-
Between) 

  Coef.  Coef.  Coef.  Coef.  Coef.  
 (PCSE) p (SE) p (SE) p (SE) p (SE) p
Ln(Proven Reserves) 0.19 0.00 0.18 0.00 0.09 0.03 0.76 0.00 0.67 0.00 
 (0.02)   (0.02)   (0.04)  (0.04)  (0.06)  
Ln(Per Capita Reserves) -0.02 0.01 -0.02 0.05 0.05 0.20 -0.07 0.00 0.12 0.01 
 (0.01)   (0.01)   (0.04)  (0.02)  (0.04)  
Ln(Per Capita Reserves -0.01 0.01 0.00 0.13 0.00 0.93 -0.04 0.00 0.04 0.00 
   Squared) (0.00)   (0.00)   (0.01)  (0.01)  (0.01)  
One-Year Lag in Crude 0.70 0.00 0.70 0.00 0.71 0.00 - - - - 
   Oil Production (0.02)   (0.02)   (0.02)      
Conflict -0.42 0.00 -0.40 0.00 -0.38 0.00 -1.57 0.00 1.19 0.00 
 (0.07)   (0.06)   (0.07)  (0.33)  (0.34)  
Constant 0.37 0.00 0.46 0.01 0.05 0.91     
  (0.11)   (0.17)   (0.42)           
Observations N=11, T=35 N=11, T=35 N=11, T=35 

  Tot. Obs.=385 Tot. Obs.=385 Tot. Obs.=385 

Model 2 5736.82, p<.001 4193.97, p<.001 836.56, p<.001

Var(Level-1 Error) -   0.07 0.07

Var(Level-2 Error) -   0.001 0.01
  (Level-2 Error Var / Total 
ErrorVar) -   0.02 0.17

LR Test (H0: Level-2 Error=0) -   2=1.30, p=0.25 2=46.42, p<.001
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Figure 4: Within-Country and Between-Country Effect of Per Capita Reserves on  
Crude Oil Production 
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Table 3: Models of Senate Voting on Supreme Court Nominations 
 

   Random Intercept Probit Model 

  

Epstein et 
al. Probit 

Model 

Within-
Nomination 

Effects 

Between-
Nomination 

Effects 
Abs(Within-

Between) 
  Coef.  Coef.  Coef.  Coef.  
 (SE) p (SE) p (SE) p (SE) p
Ideological Distance -2.24 0.00 -3.48 0.00 1.58 0.67 5.06 0.18
 (0.14)   (0.24)  (3.74)  (3.76)  
Same Party 0.71 0.00 0.70 0.00 5.81 0.07 5.11 0.11
 (0.08)   (0.10)  (3.15)  (3.16)  
Lack of Qualifications -2.32 0.00 - - -4.69 0.00 - - 
 (0.12)     (0.97)    
Strong President 0.77 0.00 - - 0.60 0.38 - - 
 (0.07)     (0.69)    
Constant 1.82 0.00 0.12 0.95     
 (0.08)   (1.79)      
Observations N=3,709 Level-1 units (votes): 3,709 
    Level-2 units (nominations): 40 

Model 2 581.42, p<.001 381.37, p<.001 
Var(Level-2 Error) - 2.04 
  (Level-2 Error / Total   
   Error) - 0.67 
LR Test (H0: Level-2   
   Error=0) - 2=446.59, p<.001
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Figure 5: Within-Nomination and Between-Nomination Effects of Ideological Distance and 
Party on Senate Voting for Supreme Court Nominations 
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Note: For within-nomination effects (A and C):                 High value of between-country variable (90th pctile)                         
              Median value                   Low value (10th pctile); see text for further details. 
 


